Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372218972> ?p ?o ?g. }
- W4372218972 endingPage "120159" @default.
- W4372218972 startingPage "120159" @default.
- W4372218972 abstract "Diffusion MRI (dMRI) is a valuable imaging technique to study the connectivity and microstructure of the brain in vivo. However, the resolution of dMRI is limited by the low signal-to-noise ratio (SNR) of this technique. Various multi-shot acquisition strategies have been developed to achieve sub-millimeter resolution, but they require long scan times which can be restricting for patient scans. Alternatively, the SNR of single-shot acquisitions can be increased by using a spiral readout trajectory to minimize the sequence echo time. Imaging at ultra-high fields (UHF) could further increase the SNR of single-shot dMRI; however, the shorter T2* of brain tissue and the greater field non-uniformities at UHFs will degrade image quality, causing image blurring, distortions, and signal loss. In this study, we investigated the trade-off between the SNR and resolution of different k-space trajectories, including echo planar imaging (EPI), partial Fourier EPI, and spiral trajectories, over a range of dMRI resolutions at 7T. The effective resolution, spatial specificity and sharpening effect were measured from the point spread function (PSF) of the simulated diffusion sequences for a nominal resolution range of 0.6–1.8 mm. In-vivo partial brain scans at a nominal resolution of 1.5 mm isotropic were acquired using the three readout trajectories to validate the simulation results. Field probes were used to measure dynamic magnetic fields offline up to the 3rd order of spherical harmonics. Image reconstruction was performed using static ΔB0 field maps and the measured trajectories to correct image distortions and artifacts, leaving T2* effects as the primary source of blurring. The effective resolution was examined in fractional anisotropy (FA) maps calculated from a multi-shell dataset with b-values of 300, 1000, and 2000 s/mm2 in 5, 16, and 48 directions, respectively. In-vivo scans at nominal resolutions of 1, 1.2, and 1.5 mm were acquired and the SNR of the different trajectories calculated using the multiple replica method to investigate the SNR. Finally, in-vivo whole brain scans with an effective resolution of 1.5 mm isotropic were acquired to explore the SNR and efficiency of different trajectories at a matching effective resolution. FA and intra-cellular volume fraction (ICVF) maps calculated using neurite orientation dispersion and density imaging (NODDI) were used for the comparison. The simulations and in vivo imaging results showed that for matching nominal resolutions, EPI trajectories had the highest specificity and effective resolution with maximum image sharpening effect. However, spirals have a significantly higher SNR, in particular at higher resolutions and even when the effective image resolutions are matched. Overall, this work shows that the higher SNR of single-shot spiral trajectories at 7T allows us to achieve higher effective resolutions compared to EPI and PF-EPI to map the microstructure and connectivity of small brain structures." @default.
- W4372218972 created "2023-05-07" @default.
- W4372218972 creator A5012854579 @default.
- W4372218972 creator A5038765642 @default.
- W4372218972 date "2023-07-01" @default.
- W4372218972 modified "2023-10-16" @default.
- W4372218972 title "High-resolution diffusion-weighted imaging at 7 Tesla: Single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy" @default.
- W4372218972 cites W1493115945 @default.
- W4372218972 cites W1504742461 @default.
- W4372218972 cites W1555564847 @default.
- W4372218972 cites W1857816773 @default.
- W4372218972 cites W1890720342 @default.
- W4372218972 cites W1964802316 @default.
- W4372218972 cites W1966114378 @default.
- W4372218972 cites W1967732270 @default.
- W4372218972 cites W1972866249 @default.
- W4372218972 cites W1980817391 @default.
- W4372218972 cites W1987263024 @default.
- W4372218972 cites W1987788317 @default.
- W4372218972 cites W1993053013 @default.
- W4372218972 cites W2001164178 @default.
- W4372218972 cites W2004628586 @default.
- W4372218972 cites W2006330194 @default.
- W4372218972 cites W2016114300 @default.
- W4372218972 cites W2023442941 @default.
- W4372218972 cites W2032216596 @default.
- W4372218972 cites W2032254014 @default.
- W4372218972 cites W2033628588 @default.
- W4372218972 cites W2051908364 @default.
- W4372218972 cites W2077559791 @default.
- W4372218972 cites W2080439432 @default.
- W4372218972 cites W2080609126 @default.
- W4372218972 cites W2093712031 @default.
- W4372218972 cites W2105972569 @default.
- W4372218972 cites W2106263593 @default.
- W4372218972 cites W2111388536 @default.
- W4372218972 cites W2113316687 @default.
- W4372218972 cites W2117649283 @default.
- W4372218972 cites W2133127325 @default.
- W4372218972 cites W2133460651 @default.
- W4372218972 cites W2151354228 @default.
- W4372218972 cites W2152426879 @default.
- W4372218972 cites W2157920880 @default.
- W4372218972 cites W2161422114 @default.
- W4372218972 cites W2163031944 @default.
- W4372218972 cites W2165142794 @default.
- W4372218972 cites W2167045955 @default.
- W4372218972 cites W2172112311 @default.
- W4372218972 cites W2275837766 @default.
- W4372218972 cites W2512687144 @default.
- W4372218972 cites W2513707163 @default.
- W4372218972 cites W2514665403 @default.
- W4372218972 cites W2542021933 @default.
- W4372218972 cites W2593976904 @default.
- W4372218972 cites W2607448839 @default.
- W4372218972 cites W2755595323 @default.
- W4372218972 cites W2794122837 @default.
- W4372218972 cites W2903471028 @default.
- W4372218972 cites W2951144186 @default.
- W4372218972 cites W2970898057 @default.
- W4372218972 cites W2972672210 @default.
- W4372218972 cites W2989769992 @default.
- W4372218972 cites W3005723313 @default.
- W4372218972 cites W3009588202 @default.
- W4372218972 cites W3009799403 @default.
- W4372218972 cites W3010073879 @default.
- W4372218972 cites W3016554995 @default.
- W4372218972 cites W3089488895 @default.
- W4372218972 cites W3111584674 @default.
- W4372218972 cites W3112560917 @default.
- W4372218972 cites W3157301560 @default.
- W4372218972 cites W3158923291 @default.
- W4372218972 cites W4249760698 @default.
- W4372218972 cites W4376613387 @default.
- W4372218972 doi "https://doi.org/10.1016/j.neuroimage.2023.120159" @default.
- W4372218972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37150332" @default.
- W4372218972 hasPublicationYear "2023" @default.
- W4372218972 type Work @default.
- W4372218972 citedByCount "0" @default.
- W4372218972 crossrefType "journal-article" @default.
- W4372218972 hasAuthorship W4372218972A5012854579 @default.
- W4372218972 hasAuthorship W4372218972A5038765642 @default.
- W4372218972 hasBestOaLocation W43722189721 @default.
- W4372218972 hasConcept C115961682 @default.
- W4372218972 hasConcept C120665830 @default.
- W4372218972 hasConcept C121332964 @default.
- W4372218972 hasConcept C126838900 @default.
- W4372218972 hasConcept C134306372 @default.
- W4372218972 hasConcept C13944312 @default.
- W4372218972 hasConcept C143409427 @default.
- W4372218972 hasConcept C149550507 @default.
- W4372218972 hasConcept C154945302 @default.
- W4372218972 hasConcept C174128100 @default.
- W4372218972 hasConcept C199360897 @default.
- W4372218972 hasConcept C205372480 @default.
- W4372218972 hasConcept C2779843651 @default.
- W4372218972 hasConcept C33923547 @default.
- W4372218972 hasConcept C41008148 @default.