Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372273223> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4372273223 abstract "Owing to the cross-pollination between causal discovery and deep learning, non-statistical data (e.g., images, text, etc.) encounters significant conflicts in terms of properties and methods with traditional causal data. To unify these data types of varying forms, we redefine causal data from two novel perspectives and then propose three data paradigms. Among them, the indefinite data (like dialogues or video sources) induce low sample utilization and incapability of the distribution assumption, both leading to the fact that learning causal representation from indefinite data is, as of yet, largely unexplored. We design the causal strength variational model to settle down these two problems. Specifically, we leverage the causal strength instead of independent noise as the latent variable to construct evidence lower bound. By this design ethos, The causal strengths of different structures are regarded as a distribution and can be expressed as a 2D matrix. Moreover, considering the latent confounders, we disentangle the causal graph G into two relation subgraphs O and C. O contains pure relations between observed variables, while C represents the relations from latent variables to observed variables. We implement the above designs as a dynamic variational inference model, tailored to learn causal representation from indefinite data under latent confounding. Finally, we conduct comprehensive experiments on synthetic and real-world data to demonstrate the effectiveness of our method." @default.
- W4372273223 created "2023-05-07" @default.
- W4372273223 creator A5056067943 @default.
- W4372273223 creator A5062801846 @default.
- W4372273223 creator A5077319251 @default.
- W4372273223 date "2023-05-04" @default.
- W4372273223 modified "2023-09-27" @default.
- W4372273223 title "Towards Causal Representation Learning and Deconfounding from Indefinite Data" @default.
- W4372273223 doi "https://doi.org/10.48550/arxiv.2305.02640" @default.
- W4372273223 hasPublicationYear "2023" @default.
- W4372273223 type Work @default.
- W4372273223 citedByCount "0" @default.
- W4372273223 crossrefType "posted-content" @default.
- W4372273223 hasAuthorship W4372273223A5056067943 @default.
- W4372273223 hasAuthorship W4372273223A5062801846 @default.
- W4372273223 hasAuthorship W4372273223A5077319251 @default.
- W4372273223 hasBestOaLocation W43722732231 @default.
- W4372273223 hasConcept C105795698 @default.
- W4372273223 hasConcept C11671645 @default.
- W4372273223 hasConcept C119857082 @default.
- W4372273223 hasConcept C121332964 @default.
- W4372273223 hasConcept C149782125 @default.
- W4372273223 hasConcept C153083717 @default.
- W4372273223 hasConcept C154945302 @default.
- W4372273223 hasConcept C158600405 @default.
- W4372273223 hasConcept C163504300 @default.
- W4372273223 hasConcept C17744445 @default.
- W4372273223 hasConcept C199539241 @default.
- W4372273223 hasConcept C2776214188 @default.
- W4372273223 hasConcept C2776359362 @default.
- W4372273223 hasConcept C2776502983 @default.
- W4372273223 hasConcept C33923547 @default.
- W4372273223 hasConcept C41008148 @default.
- W4372273223 hasConcept C51167844 @default.
- W4372273223 hasConcept C62520636 @default.
- W4372273223 hasConcept C65965080 @default.
- W4372273223 hasConcept C71104824 @default.
- W4372273223 hasConcept C77350462 @default.
- W4372273223 hasConcept C94625758 @default.
- W4372273223 hasConceptScore W4372273223C105795698 @default.
- W4372273223 hasConceptScore W4372273223C11671645 @default.
- W4372273223 hasConceptScore W4372273223C119857082 @default.
- W4372273223 hasConceptScore W4372273223C121332964 @default.
- W4372273223 hasConceptScore W4372273223C149782125 @default.
- W4372273223 hasConceptScore W4372273223C153083717 @default.
- W4372273223 hasConceptScore W4372273223C154945302 @default.
- W4372273223 hasConceptScore W4372273223C158600405 @default.
- W4372273223 hasConceptScore W4372273223C163504300 @default.
- W4372273223 hasConceptScore W4372273223C17744445 @default.
- W4372273223 hasConceptScore W4372273223C199539241 @default.
- W4372273223 hasConceptScore W4372273223C2776214188 @default.
- W4372273223 hasConceptScore W4372273223C2776359362 @default.
- W4372273223 hasConceptScore W4372273223C2776502983 @default.
- W4372273223 hasConceptScore W4372273223C33923547 @default.
- W4372273223 hasConceptScore W4372273223C41008148 @default.
- W4372273223 hasConceptScore W4372273223C51167844 @default.
- W4372273223 hasConceptScore W4372273223C62520636 @default.
- W4372273223 hasConceptScore W4372273223C65965080 @default.
- W4372273223 hasConceptScore W4372273223C71104824 @default.
- W4372273223 hasConceptScore W4372273223C77350462 @default.
- W4372273223 hasConceptScore W4372273223C94625758 @default.
- W4372273223 hasLocation W43722732231 @default.
- W4372273223 hasOpenAccess W4372273223 @default.
- W4372273223 hasPrimaryLocation W43722732231 @default.
- W4372273223 hasRelatedWork W1524653654 @default.
- W4372273223 hasRelatedWork W1981074165 @default.
- W4372273223 hasRelatedWork W208082203 @default.
- W4372273223 hasRelatedWork W2804985110 @default.
- W4372273223 hasRelatedWork W2970738418 @default.
- W4372273223 hasRelatedWork W3000145203 @default.
- W4372273223 hasRelatedWork W3028048819 @default.
- W4372273223 hasRelatedWork W4285428801 @default.
- W4372273223 hasRelatedWork W4296426235 @default.
- W4372273223 hasRelatedWork W4372273223 @default.
- W4372273223 isParatext "false" @default.
- W4372273223 isRetracted "false" @default.
- W4372273223 workType "article" @default.