Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372311910> ?p ?o ?g. }
- W4372311910 endingPage "109331" @default.
- W4372311910 startingPage "109331" @default.
- W4372311910 abstract "Most conventional methods only consider the effects of materials and loading conditions when predicting the high-temperature low-cycle fatigue life of titanium aluminum alloys. However, the effects of manufacturing processes are not considered. To address this limitation, this paper proposes a machine learning method. First, the loading conditions are preliminarily filtered by physics knowledge. Second, the manufacturing processes and loading conditions are analyzed by using the average value of multiple mean impact values. Then, the variables that have little contribution to the output are filtered out, and the remaining variables are used as inputs. Finally, an optimized genetic algorithm-back propagation artificial neural network is established to predict the low-cycle fatigue life of the materials. The optimization methods are Levy flight and an adaptive adjustment mechanism of probability. Min-Max normalization is used to normalize and denormalize the data in the proposed method. A set of experimental data for Ti-685 is used to validate the proposed method. Moreover, the results show that the proposed method has better prediction accuracy than other methods." @default.
- W4372311910 created "2023-05-07" @default.
- W4372311910 creator A5008978742 @default.
- W4372311910 creator A5025633927 @default.
- W4372311910 creator A5026628307 @default.
- W4372311910 creator A5054464310 @default.
- W4372311910 creator A5059099291 @default.
- W4372311910 creator A5059356044 @default.
- W4372311910 date "2023-06-01" @default.
- W4372311910 modified "2023-10-16" @default.
- W4372311910 title "A machine learning method for HTLCF life prediction of titanium aluminum alloys with consideration of manufacturing processes" @default.
- W4372311910 cites W1546285598 @default.
- W4372311910 cites W1987763041 @default.
- W4372311910 cites W1988182752 @default.
- W4372311910 cites W1990771923 @default.
- W4372311910 cites W1996053871 @default.
- W4372311910 cites W2018857123 @default.
- W4372311910 cites W2022938880 @default.
- W4372311910 cites W2028070629 @default.
- W4372311910 cites W2043847109 @default.
- W4372311910 cites W2054557393 @default.
- W4372311910 cites W2083281224 @default.
- W4372311910 cites W2232317135 @default.
- W4372311910 cites W2365795845 @default.
- W4372311910 cites W2419083264 @default.
- W4372311910 cites W2806711281 @default.
- W4372311910 cites W2885460847 @default.
- W4372311910 cites W2888694061 @default.
- W4372311910 cites W2945020349 @default.
- W4372311910 cites W2952951441 @default.
- W4372311910 cites W2964431188 @default.
- W4372311910 cites W2966604506 @default.
- W4372311910 cites W2984302120 @default.
- W4372311910 cites W2992079587 @default.
- W4372311910 cites W2994091221 @default.
- W4372311910 cites W3038068825 @default.
- W4372311910 cites W3084122704 @default.
- W4372311910 cites W3114692006 @default.
- W4372311910 cites W3117615028 @default.
- W4372311910 cites W3133492108 @default.
- W4372311910 cites W3144006445 @default.
- W4372311910 cites W3154385657 @default.
- W4372311910 cites W3174199603 @default.
- W4372311910 cites W3197410152 @default.
- W4372311910 cites W3200703870 @default.
- W4372311910 cites W3211723343 @default.
- W4372311910 cites W3217270479 @default.
- W4372311910 cites W4220694257 @default.
- W4372311910 cites W4220765484 @default.
- W4372311910 cites W4220796195 @default.
- W4372311910 cites W4220966092 @default.
- W4372311910 cites W4308152137 @default.
- W4372311910 cites W4308498854 @default.
- W4372311910 cites W4313379233 @default.
- W4372311910 doi "https://doi.org/10.1016/j.engfracmech.2023.109331" @default.
- W4372311910 hasPublicationYear "2023" @default.
- W4372311910 type Work @default.
- W4372311910 citedByCount "1" @default.
- W4372311910 countsByYear W43723119102023 @default.
- W4372311910 crossrefType "journal-article" @default.
- W4372311910 hasAuthorship W4372311910A5008978742 @default.
- W4372311910 hasAuthorship W4372311910A5025633927 @default.
- W4372311910 hasAuthorship W4372311910A5026628307 @default.
- W4372311910 hasAuthorship W4372311910A5054464310 @default.
- W4372311910 hasAuthorship W4372311910A5059099291 @default.
- W4372311910 hasAuthorship W4372311910A5059356044 @default.
- W4372311910 hasConcept C11413529 @default.
- W4372311910 hasConcept C119857082 @default.
- W4372311910 hasConcept C136886441 @default.
- W4372311910 hasConcept C144024400 @default.
- W4372311910 hasConcept C154945302 @default.
- W4372311910 hasConcept C177264268 @default.
- W4372311910 hasConcept C19165224 @default.
- W4372311910 hasConcept C191897082 @default.
- W4372311910 hasConcept C192562407 @default.
- W4372311910 hasConcept C199360897 @default.
- W4372311910 hasConcept C2780026712 @default.
- W4372311910 hasConcept C41008148 @default.
- W4372311910 hasConcept C506065880 @default.
- W4372311910 hasConcept C50644808 @default.
- W4372311910 hasConcept C513153333 @default.
- W4372311910 hasConcept C8880873 @default.
- W4372311910 hasConcept C8953137 @default.
- W4372311910 hasConceptScore W4372311910C11413529 @default.
- W4372311910 hasConceptScore W4372311910C119857082 @default.
- W4372311910 hasConceptScore W4372311910C136886441 @default.
- W4372311910 hasConceptScore W4372311910C144024400 @default.
- W4372311910 hasConceptScore W4372311910C154945302 @default.
- W4372311910 hasConceptScore W4372311910C177264268 @default.
- W4372311910 hasConceptScore W4372311910C19165224 @default.
- W4372311910 hasConceptScore W4372311910C191897082 @default.
- W4372311910 hasConceptScore W4372311910C192562407 @default.
- W4372311910 hasConceptScore W4372311910C199360897 @default.
- W4372311910 hasConceptScore W4372311910C2780026712 @default.
- W4372311910 hasConceptScore W4372311910C41008148 @default.
- W4372311910 hasConceptScore W4372311910C506065880 @default.
- W4372311910 hasConceptScore W4372311910C50644808 @default.
- W4372311910 hasConceptScore W4372311910C513153333 @default.