Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372347568> ?p ?o ?g. }
- W4372347568 endingPage "182" @default.
- W4372347568 startingPage "157" @default.
- W4372347568 abstract "In the mapping and assessment of mountain hazard susceptibility using machine learning models, the selection of model parameters plays a critical role in the accuracy of predicting models. In this study, we present a novel approach for developing a prediction model based on random forest (RF) by incorporating ensembles of hyperparameter optimization. The performance of the RF model is enhanced by employing a Bayesian optimization (Bayes) method and a genetic algorithm (GA) and verified in the Wudu section of the Bailong River basin, China, which is a typical hazard-prone, mountainous area. We identified fourteen influential factors based on field measurements to describe the “avalanche–landslide–debris flow” hazard chains in the study area. We constructed training (80%) and validation (20%) datasets for 378 hazard sites. The performance of the models was assessed using standard statistical metrics, including recall, confusion matrix, accuracy, F1, precision, and area under the operating characteristic curve (AUC), based on a multicollinearity analysis and Relief-F two-step evaluation. The results indicate that all three models, i.e., RF, GA-RF, and Bayes-RF, achieved good performance (AUC: 0.89~0.92). The Bayes-RF model outperformed the other two models (AUC = 0.92). Therefore, this model is highly accurate and robust for mountain hazard susceptibility assessment and is useful for the study area as well as other regions. Additionally, stakeholders can use the susceptibility map produced to guide mountain hazard prevention and control measures in the region." @default.
- W4372347568 created "2023-05-07" @default.
- W4372347568 creator A5010937817 @default.
- W4372347568 creator A5039690935 @default.
- W4372347568 creator A5063553173 @default.
- W4372347568 creator A5078120618 @default.
- W4372347568 date "2023-05-04" @default.
- W4372347568 modified "2023-09-26" @default.
- W4372347568 title "Machine-Learning-Based Hybrid Modeling for Geological Hazard Susceptibility Assessment in Wudou District, Bailong River Basin, China" @default.
- W4372347568 cites W1494192115 @default.
- W4372347568 cites W1968083993 @default.
- W4372347568 cites W1981646498 @default.
- W4372347568 cites W2004659921 @default.
- W4372347568 cites W2012118327 @default.
- W4372347568 cites W2022092441 @default.
- W4372347568 cites W2091455951 @default.
- W4372347568 cites W2119534769 @default.
- W4372347568 cites W2121089701 @default.
- W4372347568 cites W2227288159 @default.
- W4372347568 cites W2312767325 @default.
- W4372347568 cites W2579180916 @default.
- W4372347568 cites W2773213923 @default.
- W4372347568 cites W2775745878 @default.
- W4372347568 cites W2798214660 @default.
- W4372347568 cites W2799444970 @default.
- W4372347568 cites W2808860853 @default.
- W4372347568 cites W2909573887 @default.
- W4372347568 cites W2911964244 @default.
- W4372347568 cites W2912796358 @default.
- W4372347568 cites W2921208133 @default.
- W4372347568 cites W2951169526 @default.
- W4372347568 cites W2980376317 @default.
- W4372347568 cites W2990579439 @default.
- W4372347568 cites W2996089053 @default.
- W4372347568 cites W3002524248 @default.
- W4372347568 cites W3006583570 @default.
- W4372347568 cites W3011171922 @default.
- W4372347568 cites W3013330736 @default.
- W4372347568 cites W3015779580 @default.
- W4372347568 cites W3016224890 @default.
- W4372347568 cites W3030359503 @default.
- W4372347568 cites W3036091573 @default.
- W4372347568 cites W3045585619 @default.
- W4372347568 cites W3081163352 @default.
- W4372347568 cites W3096207306 @default.
- W4372347568 cites W3098418967 @default.
- W4372347568 cites W3111588349 @default.
- W4372347568 cites W3133557031 @default.
- W4372347568 cites W3155733948 @default.
- W4372347568 cites W3156292730 @default.
- W4372347568 cites W3183934280 @default.
- W4372347568 cites W3194331235 @default.
- W4372347568 cites W3195675931 @default.
- W4372347568 cites W3197354770 @default.
- W4372347568 cites W3212755948 @default.
- W4372347568 cites W4206076921 @default.
- W4372347568 cites W4220947060 @default.
- W4372347568 cites W4223976346 @default.
- W4372347568 cites W4224280405 @default.
- W4372347568 cites W4226329466 @default.
- W4372347568 cites W4283323489 @default.
- W4372347568 cites W4288176565 @default.
- W4372347568 cites W4291914986 @default.
- W4372347568 cites W596984334 @default.
- W4372347568 doi "https://doi.org/10.3390/geohazards4020010" @default.
- W4372347568 hasPublicationYear "2023" @default.
- W4372347568 type Work @default.
- W4372347568 citedByCount "0" @default.
- W4372347568 crossrefType "journal-article" @default.
- W4372347568 hasAuthorship W4372347568A5010937817 @default.
- W4372347568 hasAuthorship W4372347568A5039690935 @default.
- W4372347568 hasAuthorship W4372347568A5063553173 @default.
- W4372347568 hasAuthorship W4372347568A5078120618 @default.
- W4372347568 hasBestOaLocation W43723475681 @default.
- W4372347568 hasConcept C105795698 @default.
- W4372347568 hasConcept C107673813 @default.
- W4372347568 hasConcept C119857082 @default.
- W4372347568 hasConcept C12267149 @default.
- W4372347568 hasConcept C124101348 @default.
- W4372347568 hasConcept C127413603 @default.
- W4372347568 hasConcept C153294291 @default.
- W4372347568 hasConcept C154945302 @default.
- W4372347568 hasConcept C169258074 @default.
- W4372347568 hasConcept C178790620 @default.
- W4372347568 hasConcept C185592680 @default.
- W4372347568 hasConcept C200601418 @default.
- W4372347568 hasConcept C205649164 @default.
- W4372347568 hasConcept C206355099 @default.
- W4372347568 hasConcept C207201462 @default.
- W4372347568 hasConcept C2776023875 @default.
- W4372347568 hasConcept C2776643431 @default.
- W4372347568 hasConcept C33923547 @default.
- W4372347568 hasConcept C41008148 @default.
- W4372347568 hasConcept C49261128 @default.
- W4372347568 hasConcept C52001869 @default.
- W4372347568 hasConceptScore W4372347568C105795698 @default.
- W4372347568 hasConceptScore W4372347568C107673813 @default.
- W4372347568 hasConceptScore W4372347568C119857082 @default.