Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372349768> ?p ?o ?g. }
- W4372349768 endingPage "191" @default.
- W4372349768 startingPage "191" @default.
- W4372349768 abstract "Sand cat swarm optimization algorithm (SCSO) keeps a potent and straightforward meta-heuristic algorithm derived from the distant sense of hearing of sand cats, which shows excellent performance in some large-scale optimization problems. However, the SCSO still has several disadvantages, including sluggish convergence, lower convergence precision, and the tendency to be trapped in the topical optimum. To escape these demerits, an adaptive sand cat swarm optimization algorithm based on Cauchy mutation and optimal neighborhood disturbance strategy (COSCSO) are provided in this study. First and foremost, the introduction of a nonlinear adaptive parameter in favor of scaling up the global search helps to retrieve the global optimum from a colossal search space, preventing it from being caught in a topical optimum. Secondly, the Cauchy mutation operator perturbs the search step, accelerating the convergence speed and improving the search efficiency. Finally, the optimal neighborhood disturbance strategy diversifies the population, broadens the search space, and enhances exploitation. To reveal the performance of COSCSO, it was compared with alternative algorithms in the CEC2017 and CEC2020 competition suites. Furthermore, COSCSO is further deployed to solve six engineering optimization problems. The experimental results reveal that the COSCSO is strongly competitive and capable of being deployed to solve some practical problems." @default.
- W4372349768 created "2023-05-07" @default.
- W4372349768 creator A5000510528 @default.
- W4372349768 creator A5044476532 @default.
- W4372349768 creator A5066716873 @default.
- W4372349768 date "2023-05-04" @default.
- W4372349768 modified "2023-10-15" @default.
- W4372349768 title "An Adaptive Sand Cat Swarm Algorithm Based on Cauchy Mutation and Optimal Neighborhood Disturbance Strategy" @default.
- W4372349768 cites W1595159159 @default.
- W4372349768 cites W2008166887 @default.
- W4372349768 cites W2031183907 @default.
- W4372349768 cites W2033011996 @default.
- W4372349768 cites W2072955302 @default.
- W4372349768 cites W2073732216 @default.
- W4372349768 cites W2151554678 @default.
- W4372349768 cites W2232317135 @default.
- W4372349768 cites W2235553398 @default.
- W4372349768 cites W2290883490 @default.
- W4372349768 cites W2612780643 @default.
- W4372349768 cites W2810255841 @default.
- W4372349768 cites W2883800310 @default.
- W4372349768 cites W2889545660 @default.
- W4372349768 cites W2902421512 @default.
- W4372349768 cites W2919979744 @default.
- W4372349768 cites W2973125877 @default.
- W4372349768 cites W2982453621 @default.
- W4372349768 cites W3000716545 @default.
- W4372349768 cites W3006129658 @default.
- W4372349768 cites W3030709604 @default.
- W4372349768 cites W3035777076 @default.
- W4372349768 cites W3083172984 @default.
- W4372349768 cites W3093844748 @default.
- W4372349768 cites W3119051141 @default.
- W4372349768 cites W3139484821 @default.
- W4372349768 cites W3148658051 @default.
- W4372349768 cites W3172828243 @default.
- W4372349768 cites W3185076117 @default.
- W4372349768 cites W3191633901 @default.
- W4372349768 cites W3193238958 @default.
- W4372349768 cites W3205959673 @default.
- W4372349768 cites W3210439805 @default.
- W4372349768 cites W3211434935 @default.
- W4372349768 cites W3212797097 @default.
- W4372349768 cites W3216298571 @default.
- W4372349768 cites W4206217344 @default.
- W4372349768 cites W4210401277 @default.
- W4372349768 cites W4210540274 @default.
- W4372349768 cites W4213166846 @default.
- W4372349768 cites W4223539584 @default.
- W4372349768 cites W4229005129 @default.
- W4372349768 cites W4281687867 @default.
- W4372349768 cites W4283395462 @default.
- W4372349768 cites W4283782128 @default.
- W4372349768 cites W4283784917 @default.
- W4372349768 cites W4285145335 @default.
- W4372349768 cites W4285585607 @default.
- W4372349768 cites W4287881506 @default.
- W4372349768 cites W4288736839 @default.
- W4372349768 cites W4292083457 @default.
- W4372349768 cites W4292825923 @default.
- W4372349768 cites W4295963279 @default.
- W4372349768 cites W4296534834 @default.
- W4372349768 cites W4306386084 @default.
- W4372349768 cites W4307406660 @default.
- W4372349768 cites W4308042171 @default.
- W4372349768 cites W4309772916 @default.
- W4372349768 cites W4309914107 @default.
- W4372349768 cites W4317907955 @default.
- W4372349768 cites W4318483023 @default.
- W4372349768 cites W4319595470 @default.
- W4372349768 cites W4321793659 @default.
- W4372349768 doi "https://doi.org/10.3390/biomimetics8020191" @default.
- W4372349768 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37218777" @default.
- W4372349768 hasPublicationYear "2023" @default.
- W4372349768 type Work @default.
- W4372349768 citedByCount "0" @default.
- W4372349768 crossrefType "journal-article" @default.
- W4372349768 hasAuthorship W4372349768A5000510528 @default.
- W4372349768 hasAuthorship W4372349768A5044476532 @default.
- W4372349768 hasAuthorship W4372349768A5066716873 @default.
- W4372349768 hasBestOaLocation W43723497681 @default.
- W4372349768 hasConcept C104317684 @default.
- W4372349768 hasConcept C105795698 @default.
- W4372349768 hasConcept C109718341 @default.
- W4372349768 hasConcept C11413529 @default.
- W4372349768 hasConcept C122357587 @default.
- W4372349768 hasConcept C126255220 @default.
- W4372349768 hasConcept C141934464 @default.
- W4372349768 hasConcept C144024400 @default.
- W4372349768 hasConcept C149923435 @default.
- W4372349768 hasConcept C151730666 @default.
- W4372349768 hasConcept C162324750 @default.
- W4372349768 hasConcept C173801870 @default.
- W4372349768 hasConcept C181335050 @default.
- W4372349768 hasConcept C185592680 @default.
- W4372349768 hasConcept C192122231 @default.
- W4372349768 hasConcept C2777303404 @default.
- W4372349768 hasConcept C2777601987 @default.