Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375795467> ?p ?o ?g. }
- W4375795467 endingPage "9711" @default.
- W4375795467 startingPage "9698" @default.
- W4375795467 abstract "For subway regenerative energy optimization, the essential idea is to maximize the amount of regenerative energy absorption (AREA) between accelerating trains and braking trains by adjusting train timetable. The bottlenecks preventing the theoretical research from being used to industrial practice lie in the time-consuming simulation of AREA and the constant setting of headway threshold, which seriously reduces the computational efficiency and compresses the solution space. For addressing these issues, we formulate neural networks to speed up the AREA simulation, develop a bisection algorithm to dynamically adjust the headway threshold under moving block mechanism, and then establish a hybrid heuristic method integrating neural networks, genetic algorithm, variable neighborhood search and simulated annealing to determine the timetable, including dwell time distribution (DTD) at stations and headway time distribution (HTD) among consecutive trains. The effectiveness of the proposed method is confirmed by numerical experiments based on the real ATO data of Beijing Subway Changping Line. The results reveal that the neural networks could save 98.96% of the computational time at the expense of 1.76% of the accuracy loss, such that the hybrid heuristic algorithm could save 75.68% of the computational time. Benchmarked with the constant headway constraints used in literature, the variable headway constraints could achieve an average improvement of AREA by 8.94%. In addition, the joint optimization of DTD and HTD could increase the AREA by 15.28% on average, compared to the single optimization of HTD. This research is of great significance to improve the practicability of subway regenerative energy optimization algorithms." @default.
- W4375795467 created "2023-05-09" @default.
- W4375795467 creator A5005284593 @default.
- W4375795467 creator A5015227261 @default.
- W4375795467 creator A5042328954 @default.
- W4375795467 creator A5045295150 @default.
- W4375795467 date "2023-09-01" @default.
- W4375795467 modified "2023-10-14" @default.
- W4375795467 title "Neural Network-Based Subway Regenerative Energy Optimization With Variable Headway Constraints" @default.
- W4375795467 cites W1724404850 @default.
- W4375795467 cites W1985797279 @default.
- W4375795467 cites W1988381049 @default.
- W4375795467 cites W2008911998 @default.
- W4375795467 cites W2010969505 @default.
- W4375795467 cites W2024060531 @default.
- W4375795467 cites W2026131661 @default.
- W4375795467 cites W2026492881 @default.
- W4375795467 cites W2070052628 @default.
- W4375795467 cites W2095493496 @default.
- W4375795467 cites W2111072639 @default.
- W4375795467 cites W2537669361 @default.
- W4375795467 cites W2572737592 @default.
- W4375795467 cites W2606636999 @default.
- W4375795467 cites W2608034803 @default.
- W4375795467 cites W2800675350 @default.
- W4375795467 cites W2883349181 @default.
- W4375795467 cites W2893386042 @default.
- W4375795467 cites W2903719424 @default.
- W4375795467 cites W2903879116 @default.
- W4375795467 cites W2911758882 @default.
- W4375795467 cites W2917118656 @default.
- W4375795467 cites W2941026147 @default.
- W4375795467 cites W2966240154 @default.
- W4375795467 cites W2968305685 @default.
- W4375795467 cites W3000231017 @default.
- W4375795467 cites W3013449633 @default.
- W4375795467 cites W3034854973 @default.
- W4375795467 cites W3036035831 @default.
- W4375795467 cites W3090840563 @default.
- W4375795467 cites W3095818744 @default.
- W4375795467 cites W3118616983 @default.
- W4375795467 cites W3121024234 @default.
- W4375795467 cites W3152982182 @default.
- W4375795467 cites W3174727474 @default.
- W4375795467 cites W3187295523 @default.
- W4375795467 cites W398786567 @default.
- W4375795467 cites W4205186925 @default.
- W4375795467 cites W4205261972 @default.
- W4375795467 cites W4210282332 @default.
- W4375795467 cites W4220984314 @default.
- W4375795467 doi "https://doi.org/10.1109/tits.2023.3270932" @default.
- W4375795467 hasPublicationYear "2023" @default.
- W4375795467 type Work @default.
- W4375795467 citedByCount "0" @default.
- W4375795467 crossrefType "journal-article" @default.
- W4375795467 hasAuthorship W4375795467A5005284593 @default.
- W4375795467 hasAuthorship W4375795467A5015227261 @default.
- W4375795467 hasAuthorship W4375795467A5042328954 @default.
- W4375795467 hasAuthorship W4375795467A5045295150 @default.
- W4375795467 hasConcept C11413529 @default.
- W4375795467 hasConcept C119599485 @default.
- W4375795467 hasConcept C126255220 @default.
- W4375795467 hasConcept C126980161 @default.
- W4375795467 hasConcept C127413603 @default.
- W4375795467 hasConcept C151637689 @default.
- W4375795467 hasConcept C154945302 @default.
- W4375795467 hasConcept C173801870 @default.
- W4375795467 hasConcept C190839683 @default.
- W4375795467 hasConcept C205649164 @default.
- W4375795467 hasConcept C2779240695 @default.
- W4375795467 hasConcept C2780165032 @default.
- W4375795467 hasConcept C33923547 @default.
- W4375795467 hasConcept C41008148 @default.
- W4375795467 hasConcept C44154836 @default.
- W4375795467 hasConcept C50644808 @default.
- W4375795467 hasConcept C58640448 @default.
- W4375795467 hasConcept C70410870 @default.
- W4375795467 hasConcept C71924100 @default.
- W4375795467 hasConceptScore W4375795467C11413529 @default.
- W4375795467 hasConceptScore W4375795467C119599485 @default.
- W4375795467 hasConceptScore W4375795467C126255220 @default.
- W4375795467 hasConceptScore W4375795467C126980161 @default.
- W4375795467 hasConceptScore W4375795467C127413603 @default.
- W4375795467 hasConceptScore W4375795467C151637689 @default.
- W4375795467 hasConceptScore W4375795467C154945302 @default.
- W4375795467 hasConceptScore W4375795467C173801870 @default.
- W4375795467 hasConceptScore W4375795467C190839683 @default.
- W4375795467 hasConceptScore W4375795467C205649164 @default.
- W4375795467 hasConceptScore W4375795467C2779240695 @default.
- W4375795467 hasConceptScore W4375795467C2780165032 @default.
- W4375795467 hasConceptScore W4375795467C33923547 @default.
- W4375795467 hasConceptScore W4375795467C41008148 @default.
- W4375795467 hasConceptScore W4375795467C44154836 @default.
- W4375795467 hasConceptScore W4375795467C50644808 @default.
- W4375795467 hasConceptScore W4375795467C58640448 @default.
- W4375795467 hasConceptScore W4375795467C70410870 @default.
- W4375795467 hasConceptScore W4375795467C71924100 @default.
- W4375795467 hasFunder F4320321001 @default.