Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375844535> ?p ?o ?g. }
- W4375844535 endingPage "100456" @default.
- W4375844535 startingPage "100456" @default.
- W4375844535 abstract "Molecular communication (MC) is a novel paradigm for nano-communication networks. Compared with diffusion-based single-input single-out (SISO) systems, multiple-input multiple-output (MIMO) MC with drift systems can effectively mitigate the negative effects of inter symbol interference (ISI), inter link interference (ILI) and noise, further improving transmission efficiency. The modeling complexity of MIMO MC systems inspires the application of deep learning (DL) techniques to establish end-to-end architectures for signal recovery. However, training of the entire end-to-end system is limited by the unknown channel and small training sample size. In this paper, aiming at signal recovery of the newly developed mathematical MIMO MC with drift system model, a Kullback–Leibler divergence (KLD) evolutionary generative adversarial network (EGAN)-based end-to-end learning method is proposed. The end-to-end architecture can be trained offline with both the sampled and fake signals generated by KLD EGAN, even with a small training sample size, and then used to recover online transmitted signals directly. Besides, two traditional detection algorithms denoted as the maximum a posterior (MAP) detector and fixed threshold (FT) detector, are proposed as well for theoretical comparison. Experiments of the effect of different model parameters on the system performance have been carried out. Results validate the effectiveness and robustness of our proposed method compared to other DL-based methods, including the deep neural networks (DNN)-based, the original GAN-based, and the original EGAN-based, in terms of transmission accuracy." @default.
- W4375844535 created "2023-05-10" @default.
- W4375844535 creator A5004147146 @default.
- W4375844535 creator A5018204019 @default.
- W4375844535 creator A5022523766 @default.
- W4375844535 creator A5035413140 @default.
- W4375844535 creator A5053086539 @default.
- W4375844535 date "2023-09-01" @default.
- W4375844535 modified "2023-09-27" @default.
- W4375844535 title "Evolutionary generative adversarial network based end-to-end learning for MIMO molecular communication with drift system" @default.
- W4375844535 cites W1984920148 @default.
- W4375844535 cites W1992360673 @default.
- W4375844535 cites W2017008190 @default.
- W4375844535 cites W2018036523 @default.
- W4375844535 cites W2043640261 @default.
- W4375844535 cites W2087090392 @default.
- W4375844535 cites W2139762024 @default.
- W4375844535 cites W2147035723 @default.
- W4375844535 cites W2156194072 @default.
- W4375844535 cites W2294456571 @default.
- W4375844535 cites W2600352841 @default.
- W4375844535 cites W2614985500 @default.
- W4375844535 cites W2734408173 @default.
- W4375844535 cites W2736068844 @default.
- W4375844535 cites W2751591033 @default.
- W4375844535 cites W2810871807 @default.
- W4375844535 cites W2884089434 @default.
- W4375844535 cites W2916238263 @default.
- W4375844535 cites W2946414050 @default.
- W4375844535 cites W2949673699 @default.
- W4375844535 cites W2963190722 @default.
- W4375844535 cites W2964121818 @default.
- W4375844535 cites W2968026845 @default.
- W4375844535 cites W2989440423 @default.
- W4375844535 cites W3005526854 @default.
- W4375844535 cites W3099359325 @default.
- W4375844535 cites W3111000293 @default.
- W4375844535 cites W3172743000 @default.
- W4375844535 cites W3204775989 @default.
- W4375844535 cites W3207473375 @default.
- W4375844535 cites W4226213961 @default.
- W4375844535 doi "https://doi.org/10.1016/j.nancom.2023.100456" @default.
- W4375844535 hasPublicationYear "2023" @default.
- W4375844535 type Work @default.
- W4375844535 citedByCount "0" @default.
- W4375844535 crossrefType "journal-article" @default.
- W4375844535 hasAuthorship W4375844535A5004147146 @default.
- W4375844535 hasAuthorship W4375844535A5018204019 @default.
- W4375844535 hasAuthorship W4375844535A5022523766 @default.
- W4375844535 hasAuthorship W4375844535A5035413140 @default.
- W4375844535 hasAuthorship W4375844535A5053086539 @default.
- W4375844535 hasConcept C101765175 @default.
- W4375844535 hasConcept C104317684 @default.
- W4375844535 hasConcept C11413529 @default.
- W4375844535 hasConcept C127162648 @default.
- W4375844535 hasConcept C154945302 @default.
- W4375844535 hasConcept C185592680 @default.
- W4375844535 hasConcept C207987634 @default.
- W4375844535 hasConcept C41008148 @default.
- W4375844535 hasConcept C50644808 @default.
- W4375844535 hasConcept C55493867 @default.
- W4375844535 hasConcept C63479239 @default.
- W4375844535 hasConcept C74296488 @default.
- W4375844535 hasConcept C761482 @default.
- W4375844535 hasConcept C76155785 @default.
- W4375844535 hasConcept C94915269 @default.
- W4375844535 hasConceptScore W4375844535C101765175 @default.
- W4375844535 hasConceptScore W4375844535C104317684 @default.
- W4375844535 hasConceptScore W4375844535C11413529 @default.
- W4375844535 hasConceptScore W4375844535C127162648 @default.
- W4375844535 hasConceptScore W4375844535C154945302 @default.
- W4375844535 hasConceptScore W4375844535C185592680 @default.
- W4375844535 hasConceptScore W4375844535C207987634 @default.
- W4375844535 hasConceptScore W4375844535C41008148 @default.
- W4375844535 hasConceptScore W4375844535C50644808 @default.
- W4375844535 hasConceptScore W4375844535C55493867 @default.
- W4375844535 hasConceptScore W4375844535C63479239 @default.
- W4375844535 hasConceptScore W4375844535C74296488 @default.
- W4375844535 hasConceptScore W4375844535C761482 @default.
- W4375844535 hasConceptScore W4375844535C76155785 @default.
- W4375844535 hasConceptScore W4375844535C94915269 @default.
- W4375844535 hasFunder F4320321543 @default.
- W4375844535 hasLocation W43758445351 @default.
- W4375844535 hasOpenAccess W4375844535 @default.
- W4375844535 hasPrimaryLocation W43758445351 @default.
- W4375844535 hasRelatedWork W1978403492 @default.
- W4375844535 hasRelatedWork W1996385303 @default.
- W4375844535 hasRelatedWork W2067697423 @default.
- W4375844535 hasRelatedWork W2110384651 @default.
- W4375844535 hasRelatedWork W2119623373 @default.
- W4375844535 hasRelatedWork W2148467627 @default.
- W4375844535 hasRelatedWork W2163201388 @default.
- W4375844535 hasRelatedWork W2370938509 @default.
- W4375844535 hasRelatedWork W2989639077 @default.
- W4375844535 hasRelatedWork W3179042490 @default.
- W4375844535 hasVolume "37" @default.
- W4375844535 isParatext "false" @default.
- W4375844535 isRetracted "false" @default.