Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375844546> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4375844546 abstract "Background: Predicting the function of proteins is a major challenge in the scientific community, particularly in the post-genomic era. Traditional methods of determining protein functions, such as experiments, are accurate but can be resource-intensive and time-consuming. The development of Next Generation Sequencing (NGS) techniques has led to the production of a large number of new protein sequences, which has increased the gap between available raw sequences and verified annotated sequences. To address this gap, automated protein function prediction (AFP) techniques have been developed as a faster and more cost-effective alternative, aiming to maintain the same accuracy level. Objective: Several automatic computational methods for protein function prediction have recently been developed and proposed. This paper reviews the best-performing AFP methods presented in the last decade and analyzes their improvements over time to identify the most promising strategies for future methods. Method: Identifying the most effective method for predicting protein function is still a challenge. The Critical Assessment of Functional Annotation (CAFA) has established an international standard for evaluating and comparing the performance of various protein function prediction methods. In this study, we analyze the best-performing methods identified in recent editions of CAFA. These methods are divided into five categories based on their principles of operation: sequence-based, structure-based, combined-based, ML-based and embeddings-based. Results: After conducting a comprehensive analysis of the various protein function prediction methods, we observe that there has been a steady improvement in the accuracy of predictions over time, mainly due to the implementation of machine learning techniques. The present trend suggests that all the best-performing methods will use machine learning to improve their accuracy in the future. Conclusion: We highlight the positive impact that the use of machine learning (ML) has had on protein function prediction. Most recent methods developed in this area use ML, demonstrating its importance in analyzing biological information and making predictions. Despite these improvements in accuracy, there is still a significant gap compared with experimental evidence. The use of new approaches based on Deep Learning (DL) techniques will probably be necessary to close this gap, and while significant progress has been made in this area, there is still more work to be done to fully realize the potential of DL." @default.
- W4375844546 created "2023-05-10" @default.
- W4375844546 creator A5013058648 @default.
- W4375844546 creator A5021297661 @default.
- W4375844546 creator A5030398899 @default.
- W4375844546 creator A5071924678 @default.
- W4375844546 date "2023-05-05" @default.
- W4375844546 modified "2023-10-16" @default.
- W4375844546 title "An overview of protein function prediction methods: a deep learning perspective" @default.
- W4375844546 doi "https://doi.org/10.2174/1574893618666230505103556" @default.
- W4375844546 hasPublicationYear "2023" @default.
- W4375844546 type Work @default.
- W4375844546 citedByCount "0" @default.
- W4375844546 crossrefType "journal-article" @default.
- W4375844546 hasAuthorship W4375844546A5013058648 @default.
- W4375844546 hasAuthorship W4375844546A5021297661 @default.
- W4375844546 hasAuthorship W4375844546A5030398899 @default.
- W4375844546 hasAuthorship W4375844546A5071924678 @default.
- W4375844546 hasConcept C104317684 @default.
- W4375844546 hasConcept C119857082 @default.
- W4375844546 hasConcept C124101348 @default.
- W4375844546 hasConcept C14036430 @default.
- W4375844546 hasConcept C154945302 @default.
- W4375844546 hasConcept C207060522 @default.
- W4375844546 hasConcept C2986374874 @default.
- W4375844546 hasConcept C41008148 @default.
- W4375844546 hasConcept C55493867 @default.
- W4375844546 hasConcept C78458016 @default.
- W4375844546 hasConcept C86803240 @default.
- W4375844546 hasConceptScore W4375844546C104317684 @default.
- W4375844546 hasConceptScore W4375844546C119857082 @default.
- W4375844546 hasConceptScore W4375844546C124101348 @default.
- W4375844546 hasConceptScore W4375844546C14036430 @default.
- W4375844546 hasConceptScore W4375844546C154945302 @default.
- W4375844546 hasConceptScore W4375844546C207060522 @default.
- W4375844546 hasConceptScore W4375844546C2986374874 @default.
- W4375844546 hasConceptScore W4375844546C41008148 @default.
- W4375844546 hasConceptScore W4375844546C55493867 @default.
- W4375844546 hasConceptScore W4375844546C78458016 @default.
- W4375844546 hasConceptScore W4375844546C86803240 @default.
- W4375844546 hasLocation W43758445461 @default.
- W4375844546 hasOpenAccess W4375844546 @default.
- W4375844546 hasPrimaryLocation W43758445461 @default.
- W4375844546 hasRelatedWork W1592638681 @default.
- W4375844546 hasRelatedWork W2061098149 @default.
- W4375844546 hasRelatedWork W2100652878 @default.
- W4375844546 hasRelatedWork W2123858481 @default.
- W4375844546 hasRelatedWork W2135470984 @default.
- W4375844546 hasRelatedWork W2494256607 @default.
- W4375844546 hasRelatedWork W4224261633 @default.
- W4375844546 hasRelatedWork W4246723235 @default.
- W4375844546 hasRelatedWork W4301401059 @default.
- W4375844546 hasRelatedWork W4308360413 @default.
- W4375844546 hasVolume "18" @default.
- W4375844546 isParatext "false" @default.
- W4375844546 isRetracted "false" @default.
- W4375844546 workType "article" @default.