Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375844652> ?p ?o ?g. }
- W4375844652 endingPage "112999" @default.
- W4375844652 startingPage "112999" @default.
- W4375844652 abstract "Wheel polygonal wear (WPW) on-board detection based on axle-box acceleration (ABA) is a critical instrument for railway wheel maintenance. However, early WPW on-board detection under typical disturbances such as rail defects is still difficult to achieve. To face this challenge, this study proposes a weighted angle-synchronous moving average (WASMA) anti-disturbance filtering for WPW on-board detection. Starting with the gear mesh component, the accurate instantaneous phase of the wheelset is calculated using a phase demodulation and time–frequency ridges combination. The ABA is then filtered using WASMA to suppress typical disturbances while revealing the features of early WPW. Simulation and field tests were carried out to verify the proposed detection method. The results demonstrated that the proposed method effectively filters out typical disturbances, such as random track irregularity, sleeper passing impact, and structural resonance, reducing the misdiagnosis of early WPW." @default.
- W4375844652 created "2023-05-10" @default.
- W4375844652 creator A5032646265 @default.
- W4375844652 creator A5040725044 @default.
- W4375844652 creator A5052991106 @default.
- W4375844652 creator A5054372507 @default.
- W4375844652 creator A5064736842 @default.
- W4375844652 creator A5076925795 @default.
- W4375844652 creator A5086038148 @default.
- W4375844652 date "2023-07-01" @default.
- W4375844652 modified "2023-10-03" @default.
- W4375844652 title "An anti-disturbance method for on-board detection of early wheel polygonal wear by weighted angle-synchronous moving average" @default.
- W4375844652 cites W1562748609 @default.
- W4375844652 cites W1963586343 @default.
- W4375844652 cites W1999976242 @default.
- W4375844652 cites W2034941996 @default.
- W4375844652 cites W2048846975 @default.
- W4375844652 cites W2056113729 @default.
- W4375844652 cites W2064739731 @default.
- W4375844652 cites W2070066407 @default.
- W4375844652 cites W2076227741 @default.
- W4375844652 cites W2094061667 @default.
- W4375844652 cites W2100075834 @default.
- W4375844652 cites W2220801911 @default.
- W4375844652 cites W2346342882 @default.
- W4375844652 cites W2411835804 @default.
- W4375844652 cites W2582607838 @default.
- W4375844652 cites W2734897736 @default.
- W4375844652 cites W2737371779 @default.
- W4375844652 cites W2743669539 @default.
- W4375844652 cites W2754962589 @default.
- W4375844652 cites W2794295301 @default.
- W4375844652 cites W2796141525 @default.
- W4375844652 cites W2806023980 @default.
- W4375844652 cites W2884528516 @default.
- W4375844652 cites W2927695619 @default.
- W4375844652 cites W2941606269 @default.
- W4375844652 cites W2952345738 @default.
- W4375844652 cites W2959128924 @default.
- W4375844652 cites W3010419881 @default.
- W4375844652 cites W3089543595 @default.
- W4375844652 cites W3094458518 @default.
- W4375844652 cites W3096049973 @default.
- W4375844652 cites W3117920298 @default.
- W4375844652 cites W3152944415 @default.
- W4375844652 cites W4200398832 @default.
- W4375844652 cites W4205909219 @default.
- W4375844652 cites W4225624927 @default.
- W4375844652 cites W4240989981 @default.
- W4375844652 cites W4286697416 @default.
- W4375844652 cites W4288032970 @default.
- W4375844652 doi "https://doi.org/10.1016/j.measurement.2023.112999" @default.
- W4375844652 hasPublicationYear "2023" @default.
- W4375844652 type Work @default.
- W4375844652 citedByCount "0" @default.
- W4375844652 crossrefType "journal-article" @default.
- W4375844652 hasAuthorship W4375844652A5032646265 @default.
- W4375844652 hasAuthorship W4375844652A5040725044 @default.
- W4375844652 hasAuthorship W4375844652A5052991106 @default.
- W4375844652 hasAuthorship W4375844652A5054372507 @default.
- W4375844652 hasAuthorship W4375844652A5064736842 @default.
- W4375844652 hasAuthorship W4375844652A5076925795 @default.
- W4375844652 hasAuthorship W4375844652A5086038148 @default.
- W4375844652 hasConcept C117896860 @default.
- W4375844652 hasConcept C121332964 @default.
- W4375844652 hasConcept C127313418 @default.
- W4375844652 hasConcept C127413603 @default.
- W4375844652 hasConcept C129727815 @default.
- W4375844652 hasConcept C151730666 @default.
- W4375844652 hasConcept C154945302 @default.
- W4375844652 hasConcept C24890656 @default.
- W4375844652 hasConcept C2775924081 @default.
- W4375844652 hasConcept C2777601987 @default.
- W4375844652 hasConcept C41008148 @default.
- W4375844652 hasConcept C44280652 @default.
- W4375844652 hasConcept C47446073 @default.
- W4375844652 hasConcept C62520636 @default.
- W4375844652 hasConcept C66938386 @default.
- W4375844652 hasConcept C74650414 @default.
- W4375844652 hasConceptScore W4375844652C117896860 @default.
- W4375844652 hasConceptScore W4375844652C121332964 @default.
- W4375844652 hasConceptScore W4375844652C127313418 @default.
- W4375844652 hasConceptScore W4375844652C127413603 @default.
- W4375844652 hasConceptScore W4375844652C129727815 @default.
- W4375844652 hasConceptScore W4375844652C151730666 @default.
- W4375844652 hasConceptScore W4375844652C154945302 @default.
- W4375844652 hasConceptScore W4375844652C24890656 @default.
- W4375844652 hasConceptScore W4375844652C2775924081 @default.
- W4375844652 hasConceptScore W4375844652C2777601987 @default.
- W4375844652 hasConceptScore W4375844652C41008148 @default.
- W4375844652 hasConceptScore W4375844652C44280652 @default.
- W4375844652 hasConceptScore W4375844652C47446073 @default.
- W4375844652 hasConceptScore W4375844652C62520636 @default.
- W4375844652 hasConceptScore W4375844652C66938386 @default.
- W4375844652 hasConceptScore W4375844652C74650414 @default.
- W4375844652 hasFunder F4320321001 @default.
- W4375844652 hasFunder F4320327029 @default.
- W4375844652 hasFunder F4320329861 @default.