Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375851775> ?p ?o ?g. }
- W4375851775 endingPage "316" @default.
- W4375851775 startingPage "301" @default.
- W4375851775 abstract "Tissue engineers have utilised a variety of three-dimensional (3D) scaffolds for controlling multicellular dynamics and the resulting tissue microstructures. In particular, cutting-edge microfabrication technologies, such as 3D bioprinting, provide increasingly complex structures. However, unpredictable microtissue detachment from scaffolds, which ruins desired tissue structures, is becoming an evident problem. To overcome this issue, we elucidated the mechanism underlying collective cellular detachment by combining a new computational simulation method with quantitative tissue-culture experiments. We first quantified the stochastic processes of cellular detachment shown by vascular smooth muscle cells on model curved scaffolds and found that microtissue morphologies vary drastically depending on cell contractility, substrate curvature, and cell-substrate adhesion strength. To explore this mechanism, we developed a new particle-based model that explicitly describes stochastic processes of multicellular dynamics, such as adhesion, rupture, and large deformation of microtissues on structured surfaces. Computational simulations using the developed model successfully reproduced characteristic detachment processes observed in experiments. Crucially, simulations revealed that cellular contractility-induced stress is locally concentrated at the cell-substrate interface, subsequently inducing a catastrophic process of collective cellular detachment, which can be suppressed by modulating cell contractility, substrate curvature, and cell-substrate adhesion. These results show that the developed computational method is useful for predicting engineered tissue dynamics as a platform for prediction-guided scaffold design. Microfabrication technologies aiming to control multicellular dynamics by engineering 3D scaffolds are attracting increasing attention for modelling in cell biology and regenerative medicine. However, obtaining microtissues with the desired 3D structures is made considerably more difficult by microtissue detachments from scaffolds. This study reveals a key mechanism behind this detachment by developing a novel computational method for simulating multicellular dynamics on designed scaffolds. This method enabled us to predict microtissue dynamics on structured surfaces, based on cell mechanics, substrate geometry, and cell-substrate interaction. This study provides a platform for the physics-based design of micro-engineered scaffolds and thus contributes to prediction-guided biomaterials design in the future." @default.
- W4375851775 created "2023-05-10" @default.
- W4375851775 creator A5005495276 @default.
- W4375851775 creator A5014876319 @default.
- W4375851775 creator A5015519022 @default.
- W4375851775 creator A5026190490 @default.
- W4375851775 creator A5036133350 @default.
- W4375851775 creator A5051680831 @default.
- W4375851775 creator A5051867005 @default.
- W4375851775 creator A5059764223 @default.
- W4375851775 creator A5068146087 @default.
- W4375851775 creator A5080701452 @default.
- W4375851775 date "2023-08-01" @default.
- W4375851775 modified "2023-10-13" @default.
- W4375851775 title "Multicellular dynamics on structured surfaces: Stress concentration is a key to controlling complex microtissue morphology on engineered scaffolds" @default.
- W4375851775 cites W1947476344 @default.
- W4375851775 cites W1981332112 @default.
- W4375851775 cites W2008277897 @default.
- W4375851775 cites W2011018758 @default.
- W4375851775 cites W2012325092 @default.
- W4375851775 cites W2029392940 @default.
- W4375851775 cites W2030476219 @default.
- W4375851775 cites W2047997264 @default.
- W4375851775 cites W2056258594 @default.
- W4375851775 cites W2085973469 @default.
- W4375851775 cites W2086841672 @default.
- W4375851775 cites W211582720 @default.
- W4375851775 cites W2116085950 @default.
- W4375851775 cites W2120559167 @default.
- W4375851775 cites W2134156839 @default.
- W4375851775 cites W2155154349 @default.
- W4375851775 cites W2263006505 @default.
- W4375851775 cites W2408382340 @default.
- W4375851775 cites W2411841803 @default.
- W4375851775 cites W2517314340 @default.
- W4375851775 cites W2522847382 @default.
- W4375851775 cites W2589346240 @default.
- W4375851775 cites W2590915628 @default.
- W4375851775 cites W2738008305 @default.
- W4375851775 cites W2775339123 @default.
- W4375851775 cites W2784479902 @default.
- W4375851775 cites W2789120961 @default.
- W4375851775 cites W2797021544 @default.
- W4375851775 cites W2802309935 @default.
- W4375851775 cites W2805504863 @default.
- W4375851775 cites W2820932019 @default.
- W4375851775 cites W2903196097 @default.
- W4375851775 cites W2913551921 @default.
- W4375851775 cites W2921241224 @default.
- W4375851775 cites W2939175070 @default.
- W4375851775 cites W2953214109 @default.
- W4375851775 cites W2963047357 @default.
- W4375851775 cites W2963289606 @default.
- W4375851775 cites W2964284491 @default.
- W4375851775 cites W2973183603 @default.
- W4375851775 cites W2977346494 @default.
- W4375851775 cites W2981368297 @default.
- W4375851775 cites W2996183331 @default.
- W4375851775 cites W2997274320 @default.
- W4375851775 cites W2998890935 @default.
- W4375851775 cites W3004120471 @default.
- W4375851775 cites W3006793445 @default.
- W4375851775 cites W3007121632 @default.
- W4375851775 cites W3043011448 @default.
- W4375851775 cites W3048835966 @default.
- W4375851775 cites W3106416999 @default.
- W4375851775 cites W3108352726 @default.
- W4375851775 cites W3132545665 @default.
- W4375851775 cites W3136370870 @default.
- W4375851775 cites W3165872273 @default.
- W4375851775 cites W3209196588 @default.
- W4375851775 cites W3211656948 @default.
- W4375851775 cites W3216050139 @default.
- W4375851775 cites W4200402436 @default.
- W4375851775 cites W4206509457 @default.
- W4375851775 cites W4225845128 @default.
- W4375851775 cites W4310638986 @default.
- W4375851775 cites W4323042834 @default.
- W4375851775 cites W4323926409 @default.
- W4375851775 doi "https://doi.org/10.1016/j.actbio.2023.05.012" @default.
- W4375851775 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37164300" @default.
- W4375851775 hasPublicationYear "2023" @default.
- W4375851775 type Work @default.
- W4375851775 citedByCount "1" @default.
- W4375851775 crossrefType "journal-article" @default.
- W4375851775 hasAuthorship W4375851775A5005495276 @default.
- W4375851775 hasAuthorship W4375851775A5014876319 @default.
- W4375851775 hasAuthorship W4375851775A5015519022 @default.
- W4375851775 hasAuthorship W4375851775A5026190490 @default.
- W4375851775 hasAuthorship W4375851775A5036133350 @default.
- W4375851775 hasAuthorship W4375851775A5051680831 @default.
- W4375851775 hasAuthorship W4375851775A5051867005 @default.
- W4375851775 hasAuthorship W4375851775A5059764223 @default.
- W4375851775 hasAuthorship W4375851775A5068146087 @default.
- W4375851775 hasAuthorship W4375851775A5080701452 @default.
- W4375851775 hasBestOaLocation W43758517751 @default.
- W4375851775 hasConcept C127413603 @default.
- W4375851775 hasConcept C136229726 @default.