Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375852015> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4375852015 endingPage "100455" @default.
- W4375852015 startingPage "100455" @default.
- W4375852015 abstract "Machine Learning (ML) systems are built to shift through large amounts of data. Applying ML in production settings allows for the collection of additional data that can be used to guide future decisions about the system's design. Since the late 1970s, academics have taken an interest in the field of financial predictions. The real business environment has neglected statistical methods in forecasting, despite highly sophisticated models and rising competence in econometrics and economics studies. Current research centres on implementing various algorithms to identify the variation in performance for each product, and it compares the time series models to one another to identify the better model. A basic forecast model can make reliable, fact-based sales projections, as suggested by the books on forecasting. The worth of the forecast model lies in its ability to simplify the arduous tasks of budgeting and rolling forecasting by providing an unbiased forecast upon which a comprehensive financial strategy can be based. In this research, we first look for appropriate machine learning algorithms that can be used to predict sales of truck components, and then we run experiments with the selected algorithms to make predictions about sales and assess how well they work. Business forecasting allows for the estimation of a wide variety of activities, each of which can be tailored to the individual requirements of the company. Here are a few examples of frequently estimated kinds of operations. Although it is well-known that certain algorithms, such as Simple Linear Regression, Gradient Boosting Regression, Support Vector Regression, and Random Forest Regression, outperform others, it has been demonstrated that Random Forest Regression is the most suitable algorithm. Based on the results of the experiments and the analysis, the Ridge regression algorithm was selected as the best algorithm to conduct the sales forecasting of truck components for the selected data." @default.
- W4375852015 created "2023-05-10" @default.
- W4375852015 creator A5005323572 @default.
- W4375852015 creator A5009407298 @default.
- W4375852015 creator A5018668147 @default.
- W4375852015 creator A5031520078 @default.
- W4375852015 creator A5051678801 @default.
- W4375852015 creator A5058295315 @default.
- W4375852015 date "2023-05-01" @default.
- W4375852015 modified "2023-09-26" @default.
- W4375852015 title "Machine learning models for forecasting and estimation of business operations" @default.
- W4375852015 cites W2900975424 @default.
- W4375852015 cites W2969834763 @default.
- W4375852015 cites W2971126087 @default.
- W4375852015 cites W2973047752 @default.
- W4375852015 cites W3006173823 @default.
- W4375852015 cites W3030419021 @default.
- W4375852015 cites W3036823454 @default.
- W4375852015 cites W3043685378 @default.
- W4375852015 cites W3046976979 @default.
- W4375852015 cites W3066024730 @default.
- W4375852015 cites W3090661556 @default.
- W4375852015 cites W3095652165 @default.
- W4375852015 cites W3133783100 @default.
- W4375852015 cites W3216797073 @default.
- W4375852015 cites W4205160218 @default.
- W4375852015 cites W4206030306 @default.
- W4375852015 cites W4206347244 @default.
- W4375852015 cites W4229066889 @default.
- W4375852015 cites W4286542298 @default.
- W4375852015 cites W4293370688 @default.
- W4375852015 cites W4294811359 @default.
- W4375852015 cites W4312885369 @default.
- W4375852015 cites W4319068670 @default.
- W4375852015 doi "https://doi.org/10.1016/j.hitech.2023.100455" @default.
- W4375852015 hasPublicationYear "2023" @default.
- W4375852015 type Work @default.
- W4375852015 citedByCount "0" @default.
- W4375852015 crossrefType "journal-article" @default.
- W4375852015 hasAuthorship W4375852015A5005323572 @default.
- W4375852015 hasAuthorship W4375852015A5009407298 @default.
- W4375852015 hasAuthorship W4375852015A5018668147 @default.
- W4375852015 hasAuthorship W4375852015A5031520078 @default.
- W4375852015 hasAuthorship W4375852015A5051678801 @default.
- W4375852015 hasAuthorship W4375852015A5058295315 @default.
- W4375852015 hasConcept C119857082 @default.
- W4375852015 hasConcept C12267149 @default.
- W4375852015 hasConcept C127413603 @default.
- W4375852015 hasConcept C13736549 @default.
- W4375852015 hasConcept C149782125 @default.
- W4375852015 hasConcept C152877465 @default.
- W4375852015 hasConcept C154945302 @default.
- W4375852015 hasConcept C162324750 @default.
- W4375852015 hasConcept C169258074 @default.
- W4375852015 hasConcept C41008148 @default.
- W4375852015 hasConcept C70153297 @default.
- W4375852015 hasConceptScore W4375852015C119857082 @default.
- W4375852015 hasConceptScore W4375852015C12267149 @default.
- W4375852015 hasConceptScore W4375852015C127413603 @default.
- W4375852015 hasConceptScore W4375852015C13736549 @default.
- W4375852015 hasConceptScore W4375852015C149782125 @default.
- W4375852015 hasConceptScore W4375852015C152877465 @default.
- W4375852015 hasConceptScore W4375852015C154945302 @default.
- W4375852015 hasConceptScore W4375852015C162324750 @default.
- W4375852015 hasConceptScore W4375852015C169258074 @default.
- W4375852015 hasConceptScore W4375852015C41008148 @default.
- W4375852015 hasConceptScore W4375852015C70153297 @default.
- W4375852015 hasIssue "1" @default.
- W4375852015 hasLocation W43758520151 @default.
- W4375852015 hasOpenAccess W4375852015 @default.
- W4375852015 hasPrimaryLocation W43758520151 @default.
- W4375852015 hasRelatedWork W1996541855 @default.
- W4375852015 hasRelatedWork W2101819884 @default.
- W4375852015 hasRelatedWork W2937631562 @default.
- W4375852015 hasRelatedWork W2979979539 @default.
- W4375852015 hasRelatedWork W3151529617 @default.
- W4375852015 hasRelatedWork W3159988495 @default.
- W4375852015 hasRelatedWork W3194539120 @default.
- W4375852015 hasRelatedWork W3195168932 @default.
- W4375852015 hasRelatedWork W4313488044 @default.
- W4375852015 hasRelatedWork W4361795583 @default.
- W4375852015 hasVolume "34" @default.
- W4375852015 isParatext "false" @default.
- W4375852015 isRetracted "false" @default.
- W4375852015 workType "article" @default.