Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375852283> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4375852283 abstract "Data-driven models based on artificial intelligence are efficiently used to solve complex problems. The quality of groundwater is of utmost importance, as it directly impacts human health and the environment. In major parts of the world groundwater is the main source of drinking water, it is essential to periodically monitor water quality. Conventional water quality monitoring techniques involve periodical collection of water samples and analysis in the laboratory. This process is expensive, time consuming and involves lot of manual labor. The aim of our study is to build an ant colony optimized neural network for predicting groundwater quality parameters. We have proposed artificial neural network comprising of six hidden layers. The approach was validated using our groundwater quality dataset of a hard rock region in the northern part of Karnataka, India. Groundwater samples were collected by us periodically from March 2014 to October 2020 from 50 wells in this region. These samples where analysed for measuring the pH, Electrical Conductivity, Na+, Ca+, Na+, K+, Mg2+, F-, Cl- and U+. The temporal dataset was split for training, testing and validation of our model. Metrics such as R2 (Coefficient of Determination), RMSE (Root Mean Squared Error), NSE (Nash–Sutcliffe efficiencies) and MAE (Mean Absolute Error) were used to evaluate the prediction error and model performance. These performance evaluation metrics indicated the efficiency of our model in predicting the temporal variation in groundwater quality parameters. The method proposed by us can be used for prediction and the temporal frequency of sample collection can be reduced to save time and cost. The results also confirm that the combination of artificial neural network with ACO is a promising tool to optimize weights while training the network, and hence will help in reasonable prediction of groundwater quality parameters." @default.
- W4375852283 created "2023-05-10" @default.
- W4375852283 creator A5001766944 @default.
- W4375852283 creator A5066148840 @default.
- W4375852283 date "2023-05-08" @default.
- W4375852283 modified "2023-09-29" @default.
- W4375852283 title "Ant Colony Based Artificial Neural Network to Predict Spatial and Temporal Variation in Multiple Groundwater Quality Parameters" @default.
- W4375852283 doi "https://doi.org/10.20944/preprints202305.0490.v1" @default.
- W4375852283 hasPublicationYear "2023" @default.
- W4375852283 type Work @default.
- W4375852283 citedByCount "0" @default.
- W4375852283 crossrefType "posted-content" @default.
- W4375852283 hasAuthorship W4375852283A5001766944 @default.
- W4375852283 hasAuthorship W4375852283A5066148840 @default.
- W4375852283 hasBestOaLocation W43758522831 @default.
- W4375852283 hasConcept C105795698 @default.
- W4375852283 hasConcept C111472728 @default.
- W4375852283 hasConcept C11413529 @default.
- W4375852283 hasConcept C122383733 @default.
- W4375852283 hasConcept C124101348 @default.
- W4375852283 hasConcept C127413603 @default.
- W4375852283 hasConcept C138885662 @default.
- W4375852283 hasConcept C139945424 @default.
- W4375852283 hasConcept C154945302 @default.
- W4375852283 hasConcept C187320778 @default.
- W4375852283 hasConcept C18903297 @default.
- W4375852283 hasConcept C2779530757 @default.
- W4375852283 hasConcept C2780797713 @default.
- W4375852283 hasConcept C33923547 @default.
- W4375852283 hasConcept C39432304 @default.
- W4375852283 hasConcept C40128228 @default.
- W4375852283 hasConcept C41008148 @default.
- W4375852283 hasConcept C50644808 @default.
- W4375852283 hasConcept C76177295 @default.
- W4375852283 hasConcept C76886044 @default.
- W4375852283 hasConcept C86803240 @default.
- W4375852283 hasConceptScore W4375852283C105795698 @default.
- W4375852283 hasConceptScore W4375852283C111472728 @default.
- W4375852283 hasConceptScore W4375852283C11413529 @default.
- W4375852283 hasConceptScore W4375852283C122383733 @default.
- W4375852283 hasConceptScore W4375852283C124101348 @default.
- W4375852283 hasConceptScore W4375852283C127413603 @default.
- W4375852283 hasConceptScore W4375852283C138885662 @default.
- W4375852283 hasConceptScore W4375852283C139945424 @default.
- W4375852283 hasConceptScore W4375852283C154945302 @default.
- W4375852283 hasConceptScore W4375852283C187320778 @default.
- W4375852283 hasConceptScore W4375852283C18903297 @default.
- W4375852283 hasConceptScore W4375852283C2779530757 @default.
- W4375852283 hasConceptScore W4375852283C2780797713 @default.
- W4375852283 hasConceptScore W4375852283C33923547 @default.
- W4375852283 hasConceptScore W4375852283C39432304 @default.
- W4375852283 hasConceptScore W4375852283C40128228 @default.
- W4375852283 hasConceptScore W4375852283C41008148 @default.
- W4375852283 hasConceptScore W4375852283C50644808 @default.
- W4375852283 hasConceptScore W4375852283C76177295 @default.
- W4375852283 hasConceptScore W4375852283C76886044 @default.
- W4375852283 hasConceptScore W4375852283C86803240 @default.
- W4375852283 hasLocation W43758522831 @default.
- W4375852283 hasOpenAccess W4375852283 @default.
- W4375852283 hasPrimaryLocation W43758522831 @default.
- W4375852283 hasRelatedWork W2055104079 @default.
- W4375852283 hasRelatedWork W2257224980 @default.
- W4375852283 hasRelatedWork W2323849408 @default.
- W4375852283 hasRelatedWork W2366755109 @default.
- W4375852283 hasRelatedWork W2376667073 @default.
- W4375852283 hasRelatedWork W2384860961 @default.
- W4375852283 hasRelatedWork W3012114054 @default.
- W4375852283 hasRelatedWork W3015873766 @default.
- W4375852283 hasRelatedWork W3026564026 @default.
- W4375852283 hasRelatedWork W2321516359 @default.
- W4375852283 isParatext "false" @default.
- W4375852283 isRetracted "false" @default.
- W4375852283 workType "article" @default.