Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375854037> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4375854037 abstract "Most chronic disorders in the human motor system occur due to functional defects in the nervous system. In this regard, prostheses have been invented to help rehabilitate people with sensory-motor disorders, providing a suitable environment for improving and restoring motor function. These assistive devices attempt to help affected people reach normal mobility and attain a sense of touch for those paralyzed or missing limbs. Myoelectric control is used in prosthetic systems to allow users to control the movement of the prosthesis using the muscle electrical signals produced by muscle contraction, called electromyography (EMG). Classification methods in controlling assistive devices can significantly contribute to identifying specific movements or muscle functions based on the EMG signals. In recent years, Machine Learning techniques have become increasingly popular for classifying EMG signals due to their ability to recognize patterns in the data and classify them with high accuracy. In this work, we present a classification model based on the Artificial Neural Network (ANN) to classify four hand gestures: neutral, point, hook, and lateral pinch. We compared the proposed ANN model with other Machine Learning algorithms, such as LongShort-Term-Memory (LSTM), K-Nearest Neighbor (KNN), Naïve Bayes, CatBoost, Support Vector Machine (SVM), and Random Forest. The results demonstrated that the ANN model was superior to other models, with an accuracy of 93% in classifying EMG signals." @default.
- W4375854037 created "2023-05-10" @default.
- W4375854037 creator A5045062140 @default.
- W4375854037 creator A5051051172 @default.
- W4375854037 creator A5082885332 @default.
- W4375854037 date "2023-04-01" @default.
- W4375854037 modified "2023-09-23" @default.
- W4375854037 title "EMG-Based Hand Gestures Classification Using Machine Learning Algorithms" @default.
- W4375854037 cites W1972450020 @default.
- W4375854037 cites W2071908367 @default.
- W4375854037 cites W2121394390 @default.
- W4375854037 cites W2533965057 @default.
- W4375854037 cites W2767186681 @default.
- W4375854037 cites W2767223895 @default.
- W4375854037 cites W2883951752 @default.
- W4375854037 cites W2888077475 @default.
- W4375854037 cites W2903418501 @default.
- W4375854037 cites W2952609086 @default.
- W4375854037 cites W2966907001 @default.
- W4375854037 cites W2991719584 @default.
- W4375854037 cites W3001314219 @default.
- W4375854037 cites W3011275915 @default.
- W4375854037 cites W3040258833 @default.
- W4375854037 cites W3088451452 @default.
- W4375854037 cites W3101735359 @default.
- W4375854037 cites W3116219815 @default.
- W4375854037 cites W3146261424 @default.
- W4375854037 cites W3153367084 @default.
- W4375854037 cites W3166952825 @default.
- W4375854037 cites W3171776839 @default.
- W4375854037 cites W3173397789 @default.
- W4375854037 cites W4200000762 @default.
- W4375854037 cites W4200002837 @default.
- W4375854037 cites W4200129140 @default.
- W4375854037 cites W4214907620 @default.
- W4375854037 cites W4220940758 @default.
- W4375854037 cites W4225313133 @default.
- W4375854037 cites W4318147464 @default.
- W4375854037 doi "https://doi.org/10.1109/southeastcon51012.2023.10115158" @default.
- W4375854037 hasPublicationYear "2023" @default.
- W4375854037 type Work @default.
- W4375854037 citedByCount "0" @default.
- W4375854037 crossrefType "proceedings-article" @default.
- W4375854037 hasAuthorship W4375854037A5045062140 @default.
- W4375854037 hasAuthorship W4375854037A5051051172 @default.
- W4375854037 hasAuthorship W4375854037A5082885332 @default.
- W4375854037 hasConcept C110083411 @default.
- W4375854037 hasConcept C119857082 @default.
- W4375854037 hasConcept C12267149 @default.
- W4375854037 hasConcept C153180895 @default.
- W4375854037 hasConcept C154945302 @default.
- W4375854037 hasConcept C159437735 @default.
- W4375854037 hasConcept C169258074 @default.
- W4375854037 hasConcept C207347870 @default.
- W4375854037 hasConcept C2777515770 @default.
- W4375854037 hasConcept C41008148 @default.
- W4375854037 hasConcept C50644808 @default.
- W4375854037 hasConcept C52001869 @default.
- W4375854037 hasConcept C71924100 @default.
- W4375854037 hasConcept C99508421 @default.
- W4375854037 hasConceptScore W4375854037C110083411 @default.
- W4375854037 hasConceptScore W4375854037C119857082 @default.
- W4375854037 hasConceptScore W4375854037C12267149 @default.
- W4375854037 hasConceptScore W4375854037C153180895 @default.
- W4375854037 hasConceptScore W4375854037C154945302 @default.
- W4375854037 hasConceptScore W4375854037C159437735 @default.
- W4375854037 hasConceptScore W4375854037C169258074 @default.
- W4375854037 hasConceptScore W4375854037C207347870 @default.
- W4375854037 hasConceptScore W4375854037C2777515770 @default.
- W4375854037 hasConceptScore W4375854037C41008148 @default.
- W4375854037 hasConceptScore W4375854037C50644808 @default.
- W4375854037 hasConceptScore W4375854037C52001869 @default.
- W4375854037 hasConceptScore W4375854037C71924100 @default.
- W4375854037 hasConceptScore W4375854037C99508421 @default.
- W4375854037 hasLocation W43758540371 @default.
- W4375854037 hasOpenAccess W4375854037 @default.
- W4375854037 hasPrimaryLocation W43758540371 @default.
- W4375854037 hasRelatedWork W2951086240 @default.
- W4375854037 hasRelatedWork W2979979539 @default.
- W4375854037 hasRelatedWork W3127425528 @default.
- W4375854037 hasRelatedWork W3204641204 @default.
- W4375854037 hasRelatedWork W4205958290 @default.
- W4375854037 hasRelatedWork W4213444042 @default.
- W4375854037 hasRelatedWork W4283016678 @default.
- W4375854037 hasRelatedWork W4283836538 @default.
- W4375854037 hasRelatedWork W4311106074 @default.
- W4375854037 hasRelatedWork W4366374031 @default.
- W4375854037 isParatext "false" @default.
- W4375854037 isRetracted "false" @default.
- W4375854037 workType "article" @default.