Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375854842> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4375854842 endingPage "107994" @default.
- W4375854842 startingPage "107994" @default.
- W4375854842 abstract "Machine learning (ML) has been used for landslide susceptibility analysis for a while; however, studies using real-time earthquake induced landslide data are barely used. We used the data from the 2015 Gorkha earthquake in Nepal to assess adequacy of various machine learning models and segregated the importance of various landslide conditioning factors in this study. We used five supervised machine learning (ML) algorithms, namely, Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Extremely Randomized Trees Classifier (ET) to predict earthquake-induced landslide susceptibility. Due to the Gorkha earthquake and its aftershocks, around 25,000 landslides were triggered, among them 23,217 were located within the study area. Using landslide polygons, 23,217 landslide points, and 23,213 randomly selected non-landslide points were generated. The data was randomly divided into 70:30 ratio to create training and testing data sets for model training and evaluation. Results of the SHapely Additive exPlanations (SHAP) analysis and factor importance analysis using ET infer that the first five crucial factors governing earthquake induced landslides are topographic ruggedness index, slope, distance to fault, peak ground acceleration, and distance to rupture. We evaluated the ML models by comparing their performance using accuracy, precision, recall, F1 score, Kappa value, and Matthew's correlation coefficient (MCC). The results indicated that the accuracy varies between 86.60% for ET to 74.40% for LR. The area under the ROC curve for five machine learning algorithms occurs between 0.866 and 0.744 for actual label prediction and 0.935 to 0.819 for probabilistic prediction. Based on the comparative performance assessment, ET is designated to predict earthquake induced landslides more efficiently than the other ML algorithms. The sum of the results highlights that ensemble learning outperforms other ML based classifiers to assess earthquake induced landslide susceptibility." @default.
- W4375854842 created "2023-05-10" @default.
- W4375854842 creator A5017057181 @default.
- W4375854842 creator A5085388316 @default.
- W4375854842 creator A5092337438 @default.
- W4375854842 date "2023-08-01" @default.
- W4375854842 modified "2023-10-02" @default.
- W4375854842 title "Does machine learning adequately predict earthquake induced landslides?" @default.
- W4375854842 cites W1965437332 @default.
- W4375854842 cites W1971264346 @default.
- W4375854842 cites W1974355837 @default.
- W4375854842 cites W1979486410 @default.
- W4375854842 cites W2003049509 @default.
- W4375854842 cites W2040484660 @default.
- W4375854842 cites W2045076638 @default.
- W4375854842 cites W2082230735 @default.
- W4375854842 cites W2094987196 @default.
- W4375854842 cites W2139479705 @default.
- W4375854842 cites W2147663465 @default.
- W4375854842 cites W2588237346 @default.
- W4375854842 cites W2625194611 @default.
- W4375854842 cites W2736025950 @default.
- W4375854842 cites W2792301254 @default.
- W4375854842 cites W2808674445 @default.
- W4375854842 cites W2901550046 @default.
- W4375854842 cites W2911964244 @default.
- W4375854842 cites W2941641041 @default.
- W4375854842 cites W2944754424 @default.
- W4375854842 cites W2951559403 @default.
- W4375854842 cites W2972534151 @default.
- W4375854842 cites W2981581709 @default.
- W4375854842 cites W3004932743 @default.
- W4375854842 cites W3014673353 @default.
- W4375854842 cites W3030992380 @default.
- W4375854842 cites W3036091573 @default.
- W4375854842 cites W3038187968 @default.
- W4375854842 cites W3038447340 @default.
- W4375854842 cites W3138356816 @default.
- W4375854842 cites W3159946309 @default.
- W4375854842 cites W3163194719 @default.
- W4375854842 cites W3197879980 @default.
- W4375854842 cites W4205807395 @default.
- W4375854842 cites W4283163653 @default.
- W4375854842 cites W4283370578 @default.
- W4375854842 cites W596984334 @default.
- W4375854842 cites W3127322125 @default.
- W4375854842 doi "https://doi.org/10.1016/j.soildyn.2023.107994" @default.
- W4375854842 hasPublicationYear "2023" @default.
- W4375854842 type Work @default.
- W4375854842 citedByCount "2" @default.
- W4375854842 countsByYear W43758548422023 @default.
- W4375854842 crossrefType "journal-article" @default.
- W4375854842 hasAuthorship W4375854842A5017057181 @default.
- W4375854842 hasAuthorship W4375854842A5085388316 @default.
- W4375854842 hasAuthorship W4375854842A5092337438 @default.
- W4375854842 hasConcept C119857082 @default.
- W4375854842 hasConcept C12267149 @default.
- W4375854842 hasConcept C127313418 @default.
- W4375854842 hasConcept C151956035 @default.
- W4375854842 hasConcept C154945302 @default.
- W4375854842 hasConcept C156801008 @default.
- W4375854842 hasConcept C165205528 @default.
- W4375854842 hasConcept C169258074 @default.
- W4375854842 hasConcept C186295008 @default.
- W4375854842 hasConcept C2988284105 @default.
- W4375854842 hasConcept C41008148 @default.
- W4375854842 hasConcept C60486960 @default.
- W4375854842 hasConceptScore W4375854842C119857082 @default.
- W4375854842 hasConceptScore W4375854842C12267149 @default.
- W4375854842 hasConceptScore W4375854842C127313418 @default.
- W4375854842 hasConceptScore W4375854842C151956035 @default.
- W4375854842 hasConceptScore W4375854842C154945302 @default.
- W4375854842 hasConceptScore W4375854842C156801008 @default.
- W4375854842 hasConceptScore W4375854842C165205528 @default.
- W4375854842 hasConceptScore W4375854842C169258074 @default.
- W4375854842 hasConceptScore W4375854842C186295008 @default.
- W4375854842 hasConceptScore W4375854842C2988284105 @default.
- W4375854842 hasConceptScore W4375854842C41008148 @default.
- W4375854842 hasConceptScore W4375854842C60486960 @default.
- W4375854842 hasLocation W43758548421 @default.
- W4375854842 hasOpenAccess W4375854842 @default.
- W4375854842 hasPrimaryLocation W43758548421 @default.
- W4375854842 hasRelatedWork W2084027353 @default.
- W4375854842 hasRelatedWork W2089579066 @default.
- W4375854842 hasRelatedWork W2155809674 @default.
- W4375854842 hasRelatedWork W2355282060 @default.
- W4375854842 hasRelatedWork W2904667922 @default.
- W4375854842 hasRelatedWork W2941847676 @default.
- W4375854842 hasRelatedWork W3195168932 @default.
- W4375854842 hasRelatedWork W4321636153 @default.
- W4375854842 hasRelatedWork W4381378910 @default.
- W4375854842 hasRelatedWork W4383535405 @default.
- W4375854842 hasVolume "171" @default.
- W4375854842 isParatext "false" @default.
- W4375854842 isRetracted "false" @default.
- W4375854842 workType "article" @default.