Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375857359> ?p ?o ?g. }
- W4375857359 endingPage "122614" @default.
- W4375857359 startingPage "122614" @default.
- W4375857359 abstract "Predicting startup success is a critical task for startup entrepreneurs and investors. Previous studies focused only on the internal conditions of startups and did not extensively consider the effects of industry characteristics on startup success. To fill this research gap, this study proposes a model for predicting startup success, which considers the external environment and internal conditions. A machine learning model for predicting the success of a firm was developed, incorporating industry characteristics. Data were collected from 218,207 companies in Crunchbase from January 2011 to July 2021. After data preprocessing, six machine learning models were used to predict startup success and identify features significant for the prediction. Feature importance was also calculated to determine how each feature affects startup success prediction. The results indicate that media exposure, monetary funding, industry convergence level, and industry association level are significant for determining startup success." @default.
- W4375857359 created "2023-05-10" @default.
- W4375857359 creator A5019812287 @default.
- W4375857359 creator A5034561112 @default.
- W4375857359 creator A5084941645 @default.
- W4375857359 date "2023-08-01" @default.
- W4375857359 modified "2023-09-27" @default.
- W4375857359 title "How to succeed in the market? Predicting startup success using a machine learning approach" @default.
- W4375857359 cites W1899014948 @default.
- W4375857359 cites W1971937094 @default.
- W4375857359 cites W2014740757 @default.
- W4375857359 cites W2015019980 @default.
- W4375857359 cites W2070493638 @default.
- W4375857359 cites W2112103029 @default.
- W4375857359 cites W2117550576 @default.
- W4375857359 cites W2121219952 @default.
- W4375857359 cites W2127566439 @default.
- W4375857359 cites W2130921465 @default.
- W4375857359 cites W2131569810 @default.
- W4375857359 cites W2132047116 @default.
- W4375857359 cites W2148143831 @default.
- W4375857359 cites W2173394267 @default.
- W4375857359 cites W2316015274 @default.
- W4375857359 cites W2343906327 @default.
- W4375857359 cites W2417394265 @default.
- W4375857359 cites W2587189183 @default.
- W4375857359 cites W2755578533 @default.
- W4375857359 cites W2771866578 @default.
- W4375857359 cites W2787960996 @default.
- W4375857359 cites W2810227594 @default.
- W4375857359 cites W2886035717 @default.
- W4375857359 cites W2888577068 @default.
- W4375857359 cites W2899516138 @default.
- W4375857359 cites W2911955591 @default.
- W4375857359 cites W2944390955 @default.
- W4375857359 cites W2971165473 @default.
- W4375857359 cites W3012685296 @default.
- W4375857359 cites W3032532898 @default.
- W4375857359 cites W3034363528 @default.
- W4375857359 cites W3082039265 @default.
- W4375857359 cites W3121491467 @default.
- W4375857359 cites W3121787178 @default.
- W4375857359 cites W3126045164 @default.
- W4375857359 cites W3135197535 @default.
- W4375857359 cites W3161089778 @default.
- W4375857359 cites W3168238483 @default.
- W4375857359 cites W4214707156 @default.
- W4375857359 cites W4244891244 @default.
- W4375857359 doi "https://doi.org/10.1016/j.techfore.2023.122614" @default.
- W4375857359 hasPublicationYear "2023" @default.
- W4375857359 type Work @default.
- W4375857359 citedByCount "0" @default.
- W4375857359 crossrefType "journal-article" @default.
- W4375857359 hasAuthorship W4375857359A5019812287 @default.
- W4375857359 hasAuthorship W4375857359A5034561112 @default.
- W4375857359 hasAuthorship W4375857359A5084941645 @default.
- W4375857359 hasConcept C10551718 @default.
- W4375857359 hasConcept C119857082 @default.
- W4375857359 hasConcept C138885662 @default.
- W4375857359 hasConcept C144133560 @default.
- W4375857359 hasConcept C154945302 @default.
- W4375857359 hasConcept C162324750 @default.
- W4375857359 hasConcept C162853370 @default.
- W4375857359 hasConcept C187736073 @default.
- W4375857359 hasConcept C18806943 @default.
- W4375857359 hasConcept C2776401178 @default.
- W4375857359 hasConcept C2777303404 @default.
- W4375857359 hasConcept C2780451532 @default.
- W4375857359 hasConcept C34736171 @default.
- W4375857359 hasConcept C41008148 @default.
- W4375857359 hasConcept C41895202 @default.
- W4375857359 hasConcept C45804977 @default.
- W4375857359 hasConcept C50522688 @default.
- W4375857359 hasConceptScore W4375857359C10551718 @default.
- W4375857359 hasConceptScore W4375857359C119857082 @default.
- W4375857359 hasConceptScore W4375857359C138885662 @default.
- W4375857359 hasConceptScore W4375857359C144133560 @default.
- W4375857359 hasConceptScore W4375857359C154945302 @default.
- W4375857359 hasConceptScore W4375857359C162324750 @default.
- W4375857359 hasConceptScore W4375857359C162853370 @default.
- W4375857359 hasConceptScore W4375857359C187736073 @default.
- W4375857359 hasConceptScore W4375857359C18806943 @default.
- W4375857359 hasConceptScore W4375857359C2776401178 @default.
- W4375857359 hasConceptScore W4375857359C2777303404 @default.
- W4375857359 hasConceptScore W4375857359C2780451532 @default.
- W4375857359 hasConceptScore W4375857359C34736171 @default.
- W4375857359 hasConceptScore W4375857359C41008148 @default.
- W4375857359 hasConceptScore W4375857359C41895202 @default.
- W4375857359 hasConceptScore W4375857359C45804977 @default.
- W4375857359 hasConceptScore W4375857359C50522688 @default.
- W4375857359 hasFunder F4320321294 @default.
- W4375857359 hasLocation W43758573591 @default.
- W4375857359 hasOpenAccess W4375857359 @default.
- W4375857359 hasPrimaryLocation W43758573591 @default.
- W4375857359 hasRelatedWork W1566614651 @default.
- W4375857359 hasRelatedWork W1986684738 @default.
- W4375857359 hasRelatedWork W1995999171 @default.
- W4375857359 hasRelatedWork W2382928216 @default.