Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375862040> ?p ?o ?g. }
- W4375862040 abstract "Abstract Heat networks play a vital role in the energy sector by offering thermal energy to residents in certain countries. Effective management and optimization of heat networks require a deep understanding of users' heat usage patterns. Irregular patterns, such as peak usage periods, can exceed the design capacities of the system. However, previous work has mostly neglected the analysis of heat usage profiles or performed on a small scale. To close the gap, this study proposes a data-driven approach to analyze and predict heat load in a district heating network. The study uses data from over eight heating seasons of a cogeneration DH plant in Cheongju, Korea, to build analysis and forecast models using supervised machine learning (ML) algorithms, including support vector regression (SVR), boosting algorithms, and multilayer perceptron (MLP). The models take weather data, holiday information, and historical hourly heat load as input variables. The performance of these algorithms is compared using different training sample sizes of the dataset. The results show that boosting algorithms, particularly XGBoost, are more suitable ML algorithms with lower prediction errors than SVR and MLP. Finally, different explainable artificial intelligence approaches are applied to provide an in-depth interpretation of the trained model and the importance of input variables." @default.
- W4375862040 created "2023-05-10" @default.
- W4375862040 creator A5031881955 @default.
- W4375862040 creator A5032291620 @default.
- W4375862040 creator A5039683905 @default.
- W4375862040 creator A5049658367 @default.
- W4375862040 creator A5075983792 @default.
- W4375862040 creator A5086363657 @default.
- W4375862040 creator A5090797299 @default.
- W4375862040 date "2023-05-08" @default.
- W4375862040 modified "2023-10-16" @default.
- W4375862040 title "Toward explainable heat load patterns prediction for district heating" @default.
- W4375862040 cites W2529742705 @default.
- W4375862040 cites W2606695992 @default.
- W4375862040 cites W2786693279 @default.
- W4375862040 cites W2791777778 @default.
- W4375862040 cites W2796265311 @default.
- W4375862040 cites W2888972746 @default.
- W4375862040 cites W2891745088 @default.
- W4375862040 cites W2893064085 @default.
- W4375862040 cites W2902763729 @default.
- W4375862040 cites W2912897557 @default.
- W4375862040 cites W2922060155 @default.
- W4375862040 cites W2928270761 @default.
- W4375862040 cites W2936343203 @default.
- W4375862040 cites W2936921532 @default.
- W4375862040 cites W2953834711 @default.
- W4375862040 cites W2972701307 @default.
- W4375862040 cites W2972785004 @default.
- W4375862040 cites W2988729496 @default.
- W4375862040 cites W2996485148 @default.
- W4375862040 cites W3004083925 @default.
- W4375862040 cites W3006395403 @default.
- W4375862040 cites W3008571545 @default.
- W4375862040 cites W3011339269 @default.
- W4375862040 cites W3038202720 @default.
- W4375862040 cites W3038474450 @default.
- W4375862040 cites W3081125651 @default.
- W4375862040 cites W3083614837 @default.
- W4375862040 cites W3118276882 @default.
- W4375862040 cites W3127469572 @default.
- W4375862040 cites W3129849457 @default.
- W4375862040 cites W3182706339 @default.
- W4375862040 cites W4205765055 @default.
- W4375862040 cites W4281670380 @default.
- W4375862040 doi "https://doi.org/10.1038/s41598-023-34146-3" @default.
- W4375862040 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37156854" @default.
- W4375862040 hasPublicationYear "2023" @default.
- W4375862040 type Work @default.
- W4375862040 citedByCount "1" @default.
- W4375862040 countsByYear W43758620402023 @default.
- W4375862040 crossrefType "journal-article" @default.
- W4375862040 hasAuthorship W4375862040A5031881955 @default.
- W4375862040 hasAuthorship W4375862040A5032291620 @default.
- W4375862040 hasAuthorship W4375862040A5039683905 @default.
- W4375862040 hasAuthorship W4375862040A5049658367 @default.
- W4375862040 hasAuthorship W4375862040A5075983792 @default.
- W4375862040 hasAuthorship W4375862040A5086363657 @default.
- W4375862040 hasAuthorship W4375862040A5090797299 @default.
- W4375862040 hasBestOaLocation W43758620401 @default.
- W4375862040 hasConcept C119857082 @default.
- W4375862040 hasConcept C121332964 @default.
- W4375862040 hasConcept C12267149 @default.
- W4375862040 hasConcept C124101348 @default.
- W4375862040 hasConcept C154945302 @default.
- W4375862040 hasConcept C163258240 @default.
- W4375862040 hasConcept C179717631 @default.
- W4375862040 hasConcept C2776756539 @default.
- W4375862040 hasConcept C41008148 @default.
- W4375862040 hasConcept C423512 @default.
- W4375862040 hasConcept C46686674 @default.
- W4375862040 hasConcept C50644808 @default.
- W4375862040 hasConcept C62520636 @default.
- W4375862040 hasConceptScore W4375862040C119857082 @default.
- W4375862040 hasConceptScore W4375862040C121332964 @default.
- W4375862040 hasConceptScore W4375862040C12267149 @default.
- W4375862040 hasConceptScore W4375862040C124101348 @default.
- W4375862040 hasConceptScore W4375862040C154945302 @default.
- W4375862040 hasConceptScore W4375862040C163258240 @default.
- W4375862040 hasConceptScore W4375862040C179717631 @default.
- W4375862040 hasConceptScore W4375862040C2776756539 @default.
- W4375862040 hasConceptScore W4375862040C41008148 @default.
- W4375862040 hasConceptScore W4375862040C423512 @default.
- W4375862040 hasConceptScore W4375862040C46686674 @default.
- W4375862040 hasConceptScore W4375862040C50644808 @default.
- W4375862040 hasConceptScore W4375862040C62520636 @default.
- W4375862040 hasIssue "1" @default.
- W4375862040 hasLocation W43758620401 @default.
- W4375862040 hasLocation W43758620402 @default.
- W4375862040 hasLocation W43758620403 @default.
- W4375862040 hasOpenAccess W4375862040 @default.
- W4375862040 hasPrimaryLocation W43758620401 @default.
- W4375862040 hasRelatedWork W1984676746 @default.
- W4375862040 hasRelatedWork W1987859285 @default.
- W4375862040 hasRelatedWork W1996541855 @default.
- W4375862040 hasRelatedWork W2037316683 @default.
- W4375862040 hasRelatedWork W2102078023 @default.
- W4375862040 hasRelatedWork W251172239 @default.
- W4375862040 hasRelatedWork W2937631562 @default.
- W4375862040 hasRelatedWork W3195168932 @default.