Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375862489> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4375862489 abstract "ABSTRACT Background As the elderly population gradually increases, musculoskeletal disorders such as sarcopenia are increasing. Diagnostic techniques such as X-ray, CT, and MRI imaging are used to predict and diagnose sarcopenia, and methods using machine learning are gradually increasing. Purpose The purpose of this study was to create a model that can predict sarcopenia using physical characteristics and activity-related variables without medical diagnostic equipment such as imaging equipment for the elderly aged 60 years or older. Method A sarcopenia prediction model was constructed using public data obtained from the Korea National Health and Nutrition Examination Survey. Models were built using the multi-layer perceptron, XGBoost, LightGBM, and RandomForest algorithms, and the feature importance of the model with the highest accuracy was analyzed through evaluation metrics. Result The sarcopenia prediction model built with the LightGBM algorithm showed the highest test accuracy at 0.852. In constructing the LightGBM model, physical characteristics variables such as BMI showed high importance, and activity-related variables were also used in constructing the model. Conclusion The sarcopenia prediction model composed only of physical characteristics and activity-related factors showed excellent performance, and the use of this model will help predict sarcopenia in the elderly living in communities with insufficient medical resources or difficult access to medical facilities." @default.
- W4375862489 created "2023-05-10" @default.
- W4375862489 creator A5081498377 @default.
- W4375862489 date "2023-05-05" @default.
- W4375862489 modified "2023-10-16" @default.
- W4375862489 title "Machine Learning Classifier Models for Predicting Sarcopenia in the Elderly Based on Physical Factors" @default.
- W4375862489 cites W1901616594 @default.
- W4375862489 cites W2026079902 @default.
- W4375862489 cites W2058368576 @default.
- W4375862489 cites W2090964041 @default.
- W4375862489 cites W2182939686 @default.
- W4375862489 cites W2257200589 @default.
- W4375862489 cites W2418710763 @default.
- W4375862489 cites W2461938325 @default.
- W4375862489 cites W2593764183 @default.
- W4375862489 cites W2757550654 @default.
- W4375862489 cites W2762511562 @default.
- W4375862489 cites W2796704077 @default.
- W4375862489 cites W2810417822 @default.
- W4375862489 cites W2885858539 @default.
- W4375862489 cites W2890576171 @default.
- W4375862489 cites W2920920502 @default.
- W4375862489 cites W2944134014 @default.
- W4375862489 cites W2944940987 @default.
- W4375862489 cites W2982172055 @default.
- W4375862489 cites W2995536476 @default.
- W4375862489 cites W3195603614 @default.
- W4375862489 cites W3196049027 @default.
- W4375862489 cites W3201689172 @default.
- W4375862489 cites W4214920102 @default.
- W4375862489 cites W4240851546 @default.
- W4375862489 cites W4310596274 @default.
- W4375862489 cites W4311156473 @default.
- W4375862489 doi "https://doi.org/10.1101/2023.05.03.23288546" @default.
- W4375862489 hasPublicationYear "2023" @default.
- W4375862489 type Work @default.
- W4375862489 citedByCount "1" @default.
- W4375862489 countsByYear W43758624892023 @default.
- W4375862489 crossrefType "posted-content" @default.
- W4375862489 hasAuthorship W4375862489A5081498377 @default.
- W4375862489 hasBestOaLocation W43758624891 @default.
- W4375862489 hasConcept C105702510 @default.
- W4375862489 hasConcept C119857082 @default.
- W4375862489 hasConcept C151956035 @default.
- W4375862489 hasConcept C154945302 @default.
- W4375862489 hasConcept C179717631 @default.
- W4375862489 hasConcept C2776214593 @default.
- W4375862489 hasConcept C41008148 @default.
- W4375862489 hasConcept C50644808 @default.
- W4375862489 hasConcept C71924100 @default.
- W4375862489 hasConcept C95623464 @default.
- W4375862489 hasConceptScore W4375862489C105702510 @default.
- W4375862489 hasConceptScore W4375862489C119857082 @default.
- W4375862489 hasConceptScore W4375862489C151956035 @default.
- W4375862489 hasConceptScore W4375862489C154945302 @default.
- W4375862489 hasConceptScore W4375862489C179717631 @default.
- W4375862489 hasConceptScore W4375862489C2776214593 @default.
- W4375862489 hasConceptScore W4375862489C41008148 @default.
- W4375862489 hasConceptScore W4375862489C50644808 @default.
- W4375862489 hasConceptScore W4375862489C71924100 @default.
- W4375862489 hasConceptScore W4375862489C95623464 @default.
- W4375862489 hasLocation W43758624891 @default.
- W4375862489 hasOpenAccess W4375862489 @default.
- W4375862489 hasPrimaryLocation W43758624891 @default.
- W4375862489 hasRelatedWork W2556319748 @default.
- W4375862489 hasRelatedWork W2787191226 @default.
- W4375862489 hasRelatedWork W3018959556 @default.
- W4375862489 hasRelatedWork W3185179407 @default.
- W4375862489 hasRelatedWork W3200179079 @default.
- W4375862489 hasRelatedWork W3211546796 @default.
- W4375862489 hasRelatedWork W4226239449 @default.
- W4375862489 hasRelatedWork W4231994957 @default.
- W4375862489 hasRelatedWork W4285741730 @default.
- W4375862489 hasRelatedWork W4319430317 @default.
- W4375862489 isParatext "false" @default.
- W4375862489 isRetracted "false" @default.
- W4375862489 workType "article" @default.