Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375866544> ?p ?o ?g. }
- W4375866544 endingPage "4512" @default.
- W4375866544 startingPage "4512" @default.
- W4375866544 abstract "The predictive maintenance of electrical machines is a critical issue for companies, as it can greatly reduce maintenance costs, increase efficiency, and minimize downtime. In this paper, the issue of predicting electrical machine failures by predicting possible anomalies in the data is addressed through time series analysis. The time series data are from a sensor attached to an electrical machine (motor) measuring vibration variations in three axes: X (axial), Y (radial), and Z (radial X). The dataset is used to train a hybrid convolutional neural network with long short-term memory (CNN-LSTM) architecture. By employing quantile regression at the network output, the proposed approach aims to manage the uncertainties present in the data. The application of the hybrid CNN-LSTM attention-based model, combined with the use of quantile regression to capture uncertainties, yielded superior results compared to traditional reference models. These results can benefit companies by optimizing their maintenance schedules and improving the overall performance of their electric machines." @default.
- W4375866544 created "2023-05-10" @default.
- W4375866544 creator A5006394687 @default.
- W4375866544 creator A5016492093 @default.
- W4375866544 creator A5029434874 @default.
- W4375866544 creator A5044574416 @default.
- W4375866544 creator A5064834287 @default.
- W4375866544 creator A5065625026 @default.
- W4375866544 date "2023-05-05" @default.
- W4375866544 modified "2023-10-15" @default.
- W4375866544 title "Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model" @default.
- W4375866544 cites W2101976214 @default.
- W4375866544 cites W2299617127 @default.
- W4375866544 cites W2799501716 @default.
- W4375866544 cites W2895763863 @default.
- W4375866544 cites W2902700103 @default.
- W4375866544 cites W2911315707 @default.
- W4375866544 cites W2913289332 @default.
- W4375866544 cites W2918954339 @default.
- W4375866544 cites W2920083100 @default.
- W4375866544 cites W2930650313 @default.
- W4375866544 cites W2940889378 @default.
- W4375866544 cites W2943936212 @default.
- W4375866544 cites W2946804675 @default.
- W4375866544 cites W2953038294 @default.
- W4375866544 cites W2953262354 @default.
- W4375866544 cites W2954766832 @default.
- W4375866544 cites W2957277585 @default.
- W4375866544 cites W2961350108 @default.
- W4375866544 cites W2973176946 @default.
- W4375866544 cites W2975677389 @default.
- W4375866544 cites W3000277484 @default.
- W4375866544 cites W3009613663 @default.
- W4375866544 cites W3014983680 @default.
- W4375866544 cites W3036640231 @default.
- W4375866544 cites W3045229398 @default.
- W4375866544 cites W3088591629 @default.
- W4375866544 cites W3093579335 @default.
- W4375866544 cites W3097203985 @default.
- W4375866544 cites W3106650808 @default.
- W4375866544 cites W3107831402 @default.
- W4375866544 cites W3115044086 @default.
- W4375866544 cites W3127476016 @default.
- W4375866544 cites W3134325730 @default.
- W4375866544 cites W3135781642 @default.
- W4375866544 cites W3141716495 @default.
- W4375866544 cites W3158911546 @default.
- W4375866544 cites W3159105807 @default.
- W4375866544 cites W3171884590 @default.
- W4375866544 cites W3179784331 @default.
- W4375866544 cites W3181231283 @default.
- W4375866544 cites W3183249675 @default.
- W4375866544 cites W3193406951 @default.
- W4375866544 cites W3206256913 @default.
- W4375866544 cites W3206604724 @default.
- W4375866544 cites W3211188696 @default.
- W4375866544 cites W3212340323 @default.
- W4375866544 cites W3215167555 @default.
- W4375866544 cites W4200258696 @default.
- W4375866544 cites W4200366816 @default.
- W4375866544 cites W4206250965 @default.
- W4375866544 cites W4289519942 @default.
- W4375866544 cites W4289528561 @default.
- W4375866544 cites W4291378248 @default.
- W4375866544 cites W4292264333 @default.
- W4375866544 cites W4296742369 @default.
- W4375866544 cites W4301398591 @default.
- W4375866544 cites W4307939985 @default.
- W4375866544 cites W4308100962 @default.
- W4375866544 cites W4309204341 @default.
- W4375866544 cites W4309737445 @default.
- W4375866544 cites W4310975219 @default.
- W4375866544 cites W4313010312 @default.
- W4375866544 cites W4313582036 @default.
- W4375866544 cites W4313582463 @default.
- W4375866544 cites W4316369072 @default.
- W4375866544 cites W4318473773 @default.
- W4375866544 cites W4322503729 @default.
- W4375866544 cites W4323667015 @default.
- W4375866544 cites W4327620151 @default.
- W4375866544 cites W4327714588 @default.
- W4375866544 cites W4361007732 @default.
- W4375866544 cites W4361271286 @default.
- W4375866544 cites W4366088457 @default.
- W4375866544 doi "https://doi.org/10.3390/s23094512" @default.
- W4375866544 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37177716" @default.
- W4375866544 hasPublicationYear "2023" @default.
- W4375866544 type Work @default.
- W4375866544 citedByCount "4" @default.
- W4375866544 countsByYear W43758665442023 @default.
- W4375866544 crossrefType "journal-article" @default.
- W4375866544 hasAuthorship W4375866544A5006394687 @default.
- W4375866544 hasAuthorship W4375866544A5016492093 @default.
- W4375866544 hasAuthorship W4375866544A5029434874 @default.
- W4375866544 hasAuthorship W4375866544A5044574416 @default.
- W4375866544 hasAuthorship W4375866544A5064834287 @default.
- W4375866544 hasAuthorship W4375866544A5065625026 @default.
- W4375866544 hasBestOaLocation W43758665441 @default.