Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375945448> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4375945448 endingPage "1130" @default.
- W4375945448 startingPage "1119" @default.
- W4375945448 abstract "The Retinal image analysis has received significant attention from researchers due to the compelling need of early detection systems that aid in the screening and treatment of diseases. Several automated retinal disease detection studies are carried out as part of retinal image processing. Heren an Improved Ensemble Deep Learning (IEDL) model has been proposed to detect the various retinal diseases with a higher rate of accuracy, having multiclass classification on various stages of deep learning algorithms. This model incorporates deep learning algorithms which automatically extract the properties from training data, that lacks in traditional machine learning approaches. Here, Retinal Fundus Multi-Disease Image Dataset (RFMiD) is considered for evaluation. First, image augmentation is performed for manipulating the existing images followed by upsampling and normalization. The proposed IEDL model then process the normalized images which is computationally intensive with several ensemble learning strategies like heterogeneous deep learning models, bagging through 5-fold cross-validation which consists of four deep learning models like ResNet, Bagging, DenseNet, EfficientNet and a stacked logistic regression for predicting purpose. The accuracy rate achieved by this method is 97.78%, with a specificity rate of 97.23%, sensitivity of 96.45%, precision of 96.45%, and recall of 94.23%. The model is capable of achieving a greater accuracy rate of 1.7% than the traditional machine learning methods." @default.
- W4375945448 created "2023-05-10" @default.
- W4375945448 creator A5057132017 @default.
- W4375945448 creator A5065073774 @default.
- W4375945448 creator A5086730003 @default.
- W4375945448 date "2023-07-02" @default.
- W4375945448 modified "2023-10-16" @default.
- W4375945448 title "Improved ensemble deep learning based retinal disease detection using image processing" @default.
- W4375945448 cites W1912405798 @default.
- W4375945448 cites W2791117644 @default.
- W4375945448 cites W2801013643 @default.
- W4375945448 cites W2801475611 @default.
- W4375945448 cites W2809144587 @default.
- W4375945448 cites W2898714616 @default.
- W4375945448 cites W2907750714 @default.
- W4375945448 cites W2911558038 @default.
- W4375945448 cites W2941942490 @default.
- W4375945448 cites W2948525168 @default.
- W4375945448 cites W2955571529 @default.
- W4375945448 cites W2966185236 @default.
- W4375945448 cites W2979808188 @default.
- W4375945448 cites W3004482288 @default.
- W4375945448 cites W3006026428 @default.
- W4375945448 cites W3030153799 @default.
- W4375945448 cites W3043116777 @default.
- W4375945448 cites W3048451585 @default.
- W4375945448 cites W3093569756 @default.
- W4375945448 cites W3126984895 @default.
- W4375945448 cites W3131984632 @default.
- W4375945448 cites W3144660641 @default.
- W4375945448 cites W3156832349 @default.
- W4375945448 cites W3159298823 @default.
- W4375945448 cites W3178963004 @default.
- W4375945448 cites W4207067845 @default.
- W4375945448 cites W4307713124 @default.
- W4375945448 cites W4313472325 @default.
- W4375945448 doi "https://doi.org/10.3233/jifs-230912" @default.
- W4375945448 hasPublicationYear "2023" @default.
- W4375945448 type Work @default.
- W4375945448 citedByCount "0" @default.
- W4375945448 crossrefType "journal-article" @default.
- W4375945448 hasAuthorship W4375945448A5057132017 @default.
- W4375945448 hasAuthorship W4375945448A5065073774 @default.
- W4375945448 hasAuthorship W4375945448A5086730003 @default.
- W4375945448 hasConcept C108583219 @default.
- W4375945448 hasConcept C110384440 @default.
- W4375945448 hasConcept C115961682 @default.
- W4375945448 hasConcept C119857082 @default.
- W4375945448 hasConcept C136886441 @default.
- W4375945448 hasConcept C144024400 @default.
- W4375945448 hasConcept C153180895 @default.
- W4375945448 hasConcept C154945302 @default.
- W4375945448 hasConcept C19165224 @default.
- W4375945448 hasConcept C41008148 @default.
- W4375945448 hasConcept C45942800 @default.
- W4375945448 hasConcept C9417928 @default.
- W4375945448 hasConceptScore W4375945448C108583219 @default.
- W4375945448 hasConceptScore W4375945448C110384440 @default.
- W4375945448 hasConceptScore W4375945448C115961682 @default.
- W4375945448 hasConceptScore W4375945448C119857082 @default.
- W4375945448 hasConceptScore W4375945448C136886441 @default.
- W4375945448 hasConceptScore W4375945448C144024400 @default.
- W4375945448 hasConceptScore W4375945448C153180895 @default.
- W4375945448 hasConceptScore W4375945448C154945302 @default.
- W4375945448 hasConceptScore W4375945448C19165224 @default.
- W4375945448 hasConceptScore W4375945448C41008148 @default.
- W4375945448 hasConceptScore W4375945448C45942800 @default.
- W4375945448 hasConceptScore W4375945448C9417928 @default.
- W4375945448 hasIssue "1" @default.
- W4375945448 hasLocation W43759454481 @default.
- W4375945448 hasOpenAccess W4375945448 @default.
- W4375945448 hasPrimaryLocation W43759454481 @default.
- W4375945448 hasRelatedWork W2810053714 @default.
- W4375945448 hasRelatedWork W3136979370 @default.
- W4375945448 hasRelatedWork W4223943233 @default.
- W4375945448 hasRelatedWork W4308112567 @default.
- W4375945448 hasRelatedWork W4309045103 @default.
- W4375945448 hasRelatedWork W4312200629 @default.
- W4375945448 hasRelatedWork W4360585206 @default.
- W4375945448 hasRelatedWork W4364306694 @default.
- W4375945448 hasRelatedWork W4380075502 @default.
- W4375945448 hasRelatedWork W4380086463 @default.
- W4375945448 hasVolume "45" @default.
- W4375945448 isParatext "false" @default.
- W4375945448 isRetracted "false" @default.
- W4375945448 workType "article" @default.