Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375949980> ?p ?o ?g. }
- W4375949980 endingPage "72" @default.
- W4375949980 startingPage "62" @default.
- W4375949980 abstract "Renewable energy sources, as well as the studies being conducted regarding these energy sources, are becoming increasingly important for our world. In this manuscript, the daily energy production level of a small (15 MW) run-of-river hydropower plant (RRHPP) was estimated using the artificial neural network (ANN) model. In this context, the model utilized both meteorological data and HPP-related data. The input parameters of the artificial neural network included the daily total precipitation, daily mean temperature, daily mean water vapour pressure, daily mean relative humidity, and the daily mean river water elevation at the hydropower plant, while the only output parameter consisted of the total daily energy production. For the ANN, data from the four years between 2017 and 2020 were used for training purposes, while data from the first eight months of 2021 were used for testing purposes. Ten different ANN networks were tested. A comparison of the ANN data with the real data indicated that the model provided satisfying results. The minimum error rate was 0.13%, the maximum error rate was 9.13%, and the mean error rate was 3.13%. Furthermore, six different algorithms were compared with each other. It was observed that the best results were obtained from the Levenberg-Marquardt algorithm.This study demonstrated that the ANN can estimate the daily energy production of a run-of-river HPP with high accuracy and that this model can potentially contribute to studies investigating the potential of renewable energies." @default.
- W4375949980 created "2023-05-10" @default.
- W4375949980 creator A5013667637 @default.
- W4375949980 creator A5048124793 @default.
- W4375949980 date "2023-05-18" @default.
- W4375949980 modified "2023-10-04" @default.
- W4375949980 title "Estimation of the Daily Production Levels of a Run-of-River Hydropower Plant Using the Artificial Neural Network" @default.
- W4375949980 cites W1482565868 @default.
- W4375949980 cites W1977113083 @default.
- W4375949980 cites W2002302337 @default.
- W4375949980 cites W2005937810 @default.
- W4375949980 cites W2007906460 @default.
- W4375949980 cites W2009072676 @default.
- W4375949980 cites W2016009857 @default.
- W4375949980 cites W2020892286 @default.
- W4375949980 cites W2064024245 @default.
- W4375949980 cites W2070078592 @default.
- W4375949980 cites W2072629689 @default.
- W4375949980 cites W2080525614 @default.
- W4375949980 cites W2084916128 @default.
- W4375949980 cites W2092479652 @default.
- W4375949980 cites W2093608477 @default.
- W4375949980 cites W2135814846 @default.
- W4375949980 cites W2145482300 @default.
- W4375949980 cites W2153896186 @default.
- W4375949980 cites W2166915851 @default.
- W4375949980 cites W2167982865 @default.
- W4375949980 cites W2321278764 @default.
- W4375949980 cites W2324768929 @default.
- W4375949980 cites W2735447725 @default.
- W4375949980 cites W2791147147 @default.
- W4375949980 cites W2807982056 @default.
- W4375949980 cites W2885191712 @default.
- W4375949980 cites W2891207652 @default.
- W4375949980 cites W2933176268 @default.
- W4375949980 cites W2939526242 @default.
- W4375949980 cites W2969774765 @default.
- W4375949980 cites W2971736465 @default.
- W4375949980 cites W2973219865 @default.
- W4375949980 cites W2978069640 @default.
- W4375949980 cites W2981123655 @default.
- W4375949980 cites W3126182512 @default.
- W4375949980 cites W3171101410 @default.
- W4375949980 cites W3199312638 @default.
- W4375949980 cites W3200754498 @default.
- W4375949980 cites W3201387149 @default.
- W4375949980 cites W3205589941 @default.
- W4375949980 cites W4280631968 @default.
- W4375949980 doi "https://doi.org/10.21541/apjess.1223119" @default.
- W4375949980 hasPublicationYear "2023" @default.
- W4375949980 type Work @default.
- W4375949980 citedByCount "1" @default.
- W4375949980 crossrefType "journal-article" @default.
- W4375949980 hasAuthorship W4375949980A5013667637 @default.
- W4375949980 hasAuthorship W4375949980A5048124793 @default.
- W4375949980 hasBestOaLocation W43759499801 @default.
- W4375949980 hasConcept C105795698 @default.
- W4375949980 hasConcept C119599485 @default.
- W4375949980 hasConcept C127413603 @default.
- W4375949980 hasConcept C139945424 @default.
- W4375949980 hasConcept C150217764 @default.
- W4375949980 hasConcept C153294291 @default.
- W4375949980 hasConcept C154945302 @default.
- W4375949980 hasConcept C166957645 @default.
- W4375949980 hasConcept C187320778 @default.
- W4375949980 hasConcept C188573790 @default.
- W4375949980 hasConcept C205649164 @default.
- W4375949980 hasConcept C2779343474 @default.
- W4375949980 hasConcept C33923547 @default.
- W4375949980 hasConcept C39432304 @default.
- W4375949980 hasConcept C40675005 @default.
- W4375949980 hasConcept C41008148 @default.
- W4375949980 hasConcept C50644808 @default.
- W4375949980 hasConcept C76886044 @default.
- W4375949980 hasConceptScore W4375949980C105795698 @default.
- W4375949980 hasConceptScore W4375949980C119599485 @default.
- W4375949980 hasConceptScore W4375949980C127413603 @default.
- W4375949980 hasConceptScore W4375949980C139945424 @default.
- W4375949980 hasConceptScore W4375949980C150217764 @default.
- W4375949980 hasConceptScore W4375949980C153294291 @default.
- W4375949980 hasConceptScore W4375949980C154945302 @default.
- W4375949980 hasConceptScore W4375949980C166957645 @default.
- W4375949980 hasConceptScore W4375949980C187320778 @default.
- W4375949980 hasConceptScore W4375949980C188573790 @default.
- W4375949980 hasConceptScore W4375949980C205649164 @default.
- W4375949980 hasConceptScore W4375949980C2779343474 @default.
- W4375949980 hasConceptScore W4375949980C33923547 @default.
- W4375949980 hasConceptScore W4375949980C39432304 @default.
- W4375949980 hasConceptScore W4375949980C40675005 @default.
- W4375949980 hasConceptScore W4375949980C41008148 @default.
- W4375949980 hasConceptScore W4375949980C50644808 @default.
- W4375949980 hasConceptScore W4375949980C76886044 @default.
- W4375949980 hasIssue "2" @default.
- W4375949980 hasLocation W43759499801 @default.
- W4375949980 hasLocation W43759499802 @default.
- W4375949980 hasOpenAccess W4375949980 @default.
- W4375949980 hasPrimaryLocation W43759499801 @default.
- W4375949980 hasRelatedWork W2059652129 @default.