Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375950205> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4375950205 endingPage "264" @default.
- W4375950205 startingPage "264" @default.
- W4375950205 abstract "Variations across cells, modules, packs, and vehicles can cause significant errors in the state estimation of LIBs using machine learning algorithms, especially when trained with small datasets. Training with large datasets that account for all variations is often impractical due to resource and time constraints at initial product release. To address this issue, we proposed a novel architecture that leverages electronic control units, edge computers, and the cloud to detect unrevealed variations and abnormal degradations in LIBs. The architecture comprised a generalized deep neural network (DNN) for generalizability, a personalized DNN for accuracy within a vehicle, and a detector. We emphasized that a generalized DNN trained with small datasets must show reasonable estimation accuracy during cross validation, which is critical for real applications before online training. We demonstrated the feasibility of the architecture by conducting experiments on 65 DNN models, where we found distinct hyperparameter configurations. The results showed that the personalized DNN achieves a root mean square error (RMSE) of 0.33%, while the generalized DNN achieves an RMSE of 4.6%. Finally, the Mahalanobis distance was used to consider the SOH differences between the generalized DNN and personalized DNN to detect abnormal degradations." @default.
- W4375950205 created "2023-05-10" @default.
- W4375950205 creator A5033684035 @default.
- W4375950205 creator A5043301109 @default.
- W4375950205 creator A5050807110 @default.
- W4375950205 creator A5070526742 @default.
- W4375950205 creator A5074341380 @default.
- W4375950205 creator A5082887802 @default.
- W4375950205 date "2023-05-08" @default.
- W4375950205 modified "2023-10-01" @default.
- W4375950205 title "State-of-Health Estimation and Anomaly Detection in Li-Ion Batteries Based on a Novel Architecture with Machine Learning" @default.
- W4375950205 cites W1954573324 @default.
- W4375950205 cites W1996118086 @default.
- W4375950205 cites W2070188654 @default.
- W4375950205 cites W2281031972 @default.
- W4375950205 cites W2563343938 @default.
- W4375950205 cites W2806080235 @default.
- W4375950205 cites W2884443195 @default.
- W4375950205 cites W2944571264 @default.
- W4375950205 cites W2969495951 @default.
- W4375950205 cites W3016108562 @default.
- W4375950205 cites W3042713179 @default.
- W4375950205 cites W3045004532 @default.
- W4375950205 cites W3083853617 @default.
- W4375950205 cites W3102566467 @default.
- W4375950205 cites W3135550350 @default.
- W4375950205 cites W3169854270 @default.
- W4375950205 cites W3173142043 @default.
- W4375950205 cites W3191950921 @default.
- W4375950205 cites W3203261904 @default.
- W4375950205 cites W3214094275 @default.
- W4375950205 cites W3217750961 @default.
- W4375950205 cites W4200394082 @default.
- W4375950205 cites W4200590163 @default.
- W4375950205 cites W4210776654 @default.
- W4375950205 cites W4210801203 @default.
- W4375950205 cites W4211217734 @default.
- W4375950205 cites W4225811398 @default.
- W4375950205 cites W4226205752 @default.
- W4375950205 cites W4281674107 @default.
- W4375950205 cites W4281723587 @default.
- W4375950205 cites W4283791586 @default.
- W4375950205 cites W4295957082 @default.
- W4375950205 cites W4312659804 @default.
- W4375950205 doi "https://doi.org/10.3390/batteries9050264" @default.
- W4375950205 hasPublicationYear "2023" @default.
- W4375950205 type Work @default.
- W4375950205 citedByCount "0" @default.
- W4375950205 crossrefType "journal-article" @default.
- W4375950205 hasAuthorship W4375950205A5033684035 @default.
- W4375950205 hasAuthorship W4375950205A5043301109 @default.
- W4375950205 hasAuthorship W4375950205A5050807110 @default.
- W4375950205 hasAuthorship W4375950205A5070526742 @default.
- W4375950205 hasAuthorship W4375950205A5074341380 @default.
- W4375950205 hasAuthorship W4375950205A5082887802 @default.
- W4375950205 hasBestOaLocation W43759502051 @default.
- W4375950205 hasConcept C105795698 @default.
- W4375950205 hasConcept C119857082 @default.
- W4375950205 hasConcept C139945424 @default.
- W4375950205 hasConcept C153180895 @default.
- W4375950205 hasConcept C154945302 @default.
- W4375950205 hasConcept C162307627 @default.
- W4375950205 hasConcept C1921717 @default.
- W4375950205 hasConcept C27158222 @default.
- W4375950205 hasConcept C33923547 @default.
- W4375950205 hasConcept C41008148 @default.
- W4375950205 hasConcept C50644808 @default.
- W4375950205 hasConceptScore W4375950205C105795698 @default.
- W4375950205 hasConceptScore W4375950205C119857082 @default.
- W4375950205 hasConceptScore W4375950205C139945424 @default.
- W4375950205 hasConceptScore W4375950205C153180895 @default.
- W4375950205 hasConceptScore W4375950205C154945302 @default.
- W4375950205 hasConceptScore W4375950205C162307627 @default.
- W4375950205 hasConceptScore W4375950205C1921717 @default.
- W4375950205 hasConceptScore W4375950205C27158222 @default.
- W4375950205 hasConceptScore W4375950205C33923547 @default.
- W4375950205 hasConceptScore W4375950205C41008148 @default.
- W4375950205 hasConceptScore W4375950205C50644808 @default.
- W4375950205 hasIssue "5" @default.
- W4375950205 hasLocation W43759502051 @default.
- W4375950205 hasOpenAccess W4375950205 @default.
- W4375950205 hasPrimaryLocation W43759502051 @default.
- W4375950205 hasRelatedWork W1991269640 @default.
- W4375950205 hasRelatedWork W2033000528 @default.
- W4375950205 hasRelatedWork W2097836861 @default.
- W4375950205 hasRelatedWork W2961085424 @default.
- W4375950205 hasRelatedWork W2995227436 @default.
- W4375950205 hasRelatedWork W3044078048 @default.
- W4375950205 hasRelatedWork W4200511449 @default.
- W4375950205 hasRelatedWork W4246585671 @default.
- W4375950205 hasRelatedWork W4306674287 @default.
- W4375950205 hasRelatedWork W4224009465 @default.
- W4375950205 hasVolume "9" @default.
- W4375950205 isParatext "false" @default.
- W4375950205 isRetracted "false" @default.
- W4375950205 workType "article" @default.