Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375951014> ?p ?o ?g. }
- W4375951014 endingPage "7649" @default.
- W4375951014 startingPage "7642" @default.
- W4375951014 abstract "Effective capture and recovery of sulfur hexafluoride (SF6) from SF6/N2 mixture is an urgent challenge. Considering the existence of a large number of metal–organic frameworks (MOFs), the computational screening of MOFs is strongly desired before experimental efforts. In this work, the top-performance MOF adsorbents were identified from the most recent computation-ready, experimental metal–organic frameworks (CoRE MOFs) based on various metrics. The degree of unsaturation (unsat) and the number of hydrogen per unit cell (H) revealed with the optimal machine learning (ML) model are important factors for effective SF6/N2 separation. One of the screened MOF candidates, FIRNAX01(TKL-107), was synthesized and the separation performance exceeded all the reported MOFs. Our computational screening not only offers effective prediction but also paves the way for accelerating the development of novel MOFs." @default.
- W4375951014 created "2023-05-10" @default.
- W4375951014 creator A5001300612 @default.
- W4375951014 creator A5009527477 @default.
- W4375951014 creator A5017596258 @default.
- W4375951014 creator A5031249767 @default.
- W4375951014 creator A5038198824 @default.
- W4375951014 creator A5052600714 @default.
- W4375951014 creator A5059528020 @default.
- W4375951014 creator A5074884889 @default.
- W4375951014 date "2023-05-08" @default.
- W4375951014 modified "2023-10-17" @default.
- W4375951014 title "Discovery of High-Performing Metal–Organic Frameworks for Efficient SF<sub>6</sub>/N<sub>2</sub> Separation: A Combined Computational Screening, Machine Learning, and Experimental Study" @default.
- W4375951014 cites W1568240754 @default.
- W4375951014 cites W1904524302 @default.
- W4375951014 cites W1974594870 @default.
- W4375951014 cites W1995001041 @default.
- W4375951014 cites W1996261384 @default.
- W4375951014 cites W1997217168 @default.
- W4375951014 cites W2028693420 @default.
- W4375951014 cites W2030971064 @default.
- W4375951014 cites W204158656 @default.
- W4375951014 cites W2053294416 @default.
- W4375951014 cites W2059368488 @default.
- W4375951014 cites W2063938904 @default.
- W4375951014 cites W2071828864 @default.
- W4375951014 cites W2083599885 @default.
- W4375951014 cites W2156454985 @default.
- W4375951014 cites W2315657169 @default.
- W4375951014 cites W2316446502 @default.
- W4375951014 cites W2325103942 @default.
- W4375951014 cites W2607412255 @default.
- W4375951014 cites W2810511966 @default.
- W4375951014 cites W2889440810 @default.
- W4375951014 cites W2941423636 @default.
- W4375951014 cites W2983028326 @default.
- W4375951014 cites W2998795059 @default.
- W4375951014 cites W3015635319 @default.
- W4375951014 cites W3039136197 @default.
- W4375951014 cites W3039944200 @default.
- W4375951014 cites W3047926613 @default.
- W4375951014 cites W3119967964 @default.
- W4375951014 cites W3127325412 @default.
- W4375951014 cites W3155214110 @default.
- W4375951014 cites W3174541865 @default.
- W4375951014 cites W3177550409 @default.
- W4375951014 cites W3178257603 @default.
- W4375951014 cites W3186755990 @default.
- W4375951014 cites W4210606063 @default.
- W4375951014 cites W4214938332 @default.
- W4375951014 cites W4281479517 @default.
- W4375951014 cites W4282946658 @default.
- W4375951014 cites W4285020697 @default.
- W4375951014 cites W4287832297 @default.
- W4375951014 cites W4304615416 @default.
- W4375951014 doi "https://doi.org/10.1021/acs.iecr.3c00727" @default.
- W4375951014 hasPublicationYear "2023" @default.
- W4375951014 type Work @default.
- W4375951014 citedByCount "0" @default.
- W4375951014 crossrefType "journal-article" @default.
- W4375951014 hasAuthorship W4375951014A5001300612 @default.
- W4375951014 hasAuthorship W4375951014A5009527477 @default.
- W4375951014 hasAuthorship W4375951014A5017596258 @default.
- W4375951014 hasAuthorship W4375951014A5031249767 @default.
- W4375951014 hasAuthorship W4375951014A5038198824 @default.
- W4375951014 hasAuthorship W4375951014A5052600714 @default.
- W4375951014 hasAuthorship W4375951014A5059528020 @default.
- W4375951014 hasAuthorship W4375951014A5074884889 @default.
- W4375951014 hasConcept C119857082 @default.
- W4375951014 hasConcept C121332964 @default.
- W4375951014 hasConcept C127413603 @default.
- W4375951014 hasConcept C150394285 @default.
- W4375951014 hasConcept C178790620 @default.
- W4375951014 hasConcept C179366358 @default.
- W4375951014 hasConcept C185592680 @default.
- W4375951014 hasConcept C18762648 @default.
- W4375951014 hasConcept C192562407 @default.
- W4375951014 hasConcept C201268389 @default.
- W4375951014 hasConcept C21880701 @default.
- W4375951014 hasConcept C2776061190 @default.
- W4375951014 hasConcept C41008148 @default.
- W4375951014 hasConcept C97355855 @default.
- W4375951014 hasConceptScore W4375951014C119857082 @default.
- W4375951014 hasConceptScore W4375951014C121332964 @default.
- W4375951014 hasConceptScore W4375951014C127413603 @default.
- W4375951014 hasConceptScore W4375951014C150394285 @default.
- W4375951014 hasConceptScore W4375951014C178790620 @default.
- W4375951014 hasConceptScore W4375951014C179366358 @default.
- W4375951014 hasConceptScore W4375951014C185592680 @default.
- W4375951014 hasConceptScore W4375951014C18762648 @default.
- W4375951014 hasConceptScore W4375951014C192562407 @default.
- W4375951014 hasConceptScore W4375951014C201268389 @default.
- W4375951014 hasConceptScore W4375951014C21880701 @default.
- W4375951014 hasConceptScore W4375951014C2776061190 @default.
- W4375951014 hasConceptScore W4375951014C41008148 @default.
- W4375951014 hasConceptScore W4375951014C97355855 @default.
- W4375951014 hasFunder F4320321001 @default.
- W4375951014 hasIssue "19" @default.