Matches in SemOpenAlex for { <https://semopenalex.org/work/W4375956147> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4375956147 endingPage "e0285496" @default.
- W4375956147 startingPage "e0285496" @default.
- W4375956147 abstract "Music performance action generation can be applied in multiple real-world scenarios as a research hotspot in computer vision and cross-sequence analysis. However, the current generation methods of music performance actions have consistently ignored the connection between music and performance actions, resulting in a strong sense of separation between visual and auditory content. This paper first analyzes the attention mechanism, Recurrent Neural Network (RNN), and long and short-term RNN. The long and short-term RNN is suitable for sequence data with a strong temporal correlation. Based on this, the current learning method is improved. A new model that combines attention mechanisms and long and short-term RNN is proposed, which can generate performance actions based on music beat sequences. In addition, image description generative models with attention mechanisms are adopted technically. Combined with the RNN abstract structure that does not consider recursion, the abstract network structure of RNN-Long Short-Term Memory (LSTM) is optimized. Through music beat recognition and dance movement extraction technology, data resources are allocated and adjusted in the edge server architecture. The metric for experimental results and evaluation is the model loss function value. The superiority of the proposed model is mainly reflected in the high accuracy and low consumption rate of dance movement recognition. The experimental results show that the result of the loss function of the model is at least 0.00026, and the video effect is the best when the number of layers of the LSTM module in the model is 3, the node value is 256, and the Lookback value is 15. The new model can generate harmonious and prosperous performance action sequences based on ensuring the stability of performance action generation compared with the other three models of cross-domain sequence analysis. The new model has an excellent performance in combining music and performance actions. This paper has practical reference value for promoting the application of edge computing technology in intelligent auxiliary systems for music performance." @default.
- W4375956147 created "2023-05-10" @default.
- W4375956147 creator A5001359383 @default.
- W4375956147 date "2023-05-08" @default.
- W4375956147 modified "2023-09-27" @default.
- W4375956147 title "Intelligent auxiliary system for music performance under edge computing and long short-term recurrent neural networks" @default.
- W4375956147 cites W2528092473 @default.
- W4375956147 cites W2784920021 @default.
- W4375956147 cites W2811131765 @default.
- W4375956147 cites W2896262061 @default.
- W4375956147 cites W2909706750 @default.
- W4375956147 cites W2935760944 @default.
- W4375956147 cites W2944851425 @default.
- W4375956147 cites W2955775727 @default.
- W4375956147 cites W2965516457 @default.
- W4375956147 cites W3010876998 @default.
- W4375956147 cites W3014473050 @default.
- W4375956147 cites W3025356244 @default.
- W4375956147 cites W3035785882 @default.
- W4375956147 cites W3092205855 @default.
- W4375956147 cites W3132256454 @default.
- W4375956147 cites W3156313549 @default.
- W4375956147 cites W3160455160 @default.
- W4375956147 cites W3184510571 @default.
- W4375956147 cites W3205580472 @default.
- W4375956147 cites W4205311841 @default.
- W4375956147 cites W4220786059 @default.
- W4375956147 cites W4224139907 @default.
- W4375956147 cites W4295346793 @default.
- W4375956147 doi "https://doi.org/10.1371/journal.pone.0285496" @default.
- W4375956147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37155635" @default.
- W4375956147 hasPublicationYear "2023" @default.
- W4375956147 type Work @default.
- W4375956147 citedByCount "0" @default.
- W4375956147 crossrefType "journal-article" @default.
- W4375956147 hasAuthorship W4375956147A5001359383 @default.
- W4375956147 hasBestOaLocation W43759561471 @default.
- W4375956147 hasConcept C108583219 @default.
- W4375956147 hasConcept C119857082 @default.
- W4375956147 hasConcept C147168706 @default.
- W4375956147 hasConcept C154945302 @default.
- W4375956147 hasConcept C39890363 @default.
- W4375956147 hasConcept C41008148 @default.
- W4375956147 hasConcept C50644808 @default.
- W4375956147 hasConceptScore W4375956147C108583219 @default.
- W4375956147 hasConceptScore W4375956147C119857082 @default.
- W4375956147 hasConceptScore W4375956147C147168706 @default.
- W4375956147 hasConceptScore W4375956147C154945302 @default.
- W4375956147 hasConceptScore W4375956147C39890363 @default.
- W4375956147 hasConceptScore W4375956147C41008148 @default.
- W4375956147 hasConceptScore W4375956147C50644808 @default.
- W4375956147 hasIssue "5" @default.
- W4375956147 hasLocation W43759561471 @default.
- W4375956147 hasLocation W43759561472 @default.
- W4375956147 hasOpenAccess W4375956147 @default.
- W4375956147 hasPrimaryLocation W43759561471 @default.
- W4375956147 hasRelatedWork W2793022090 @default.
- W4375956147 hasRelatedWork W2919358988 @default.
- W4375956147 hasRelatedWork W3005641657 @default.
- W4375956147 hasRelatedWork W3192794374 @default.
- W4375956147 hasRelatedWork W4210622432 @default.
- W4375956147 hasRelatedWork W4223943233 @default.
- W4375956147 hasRelatedWork W4281386417 @default.
- W4375956147 hasRelatedWork W4298168912 @default.
- W4375956147 hasRelatedWork W4312200629 @default.
- W4375956147 hasRelatedWork W4317242789 @default.
- W4375956147 hasVolume "18" @default.
- W4375956147 isParatext "false" @default.
- W4375956147 isRetracted "false" @default.
- W4375956147 workType "article" @default.