Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376105324> ?p ?o ?g. }
- W4376105324 endingPage "1504" @default.
- W4376105324 startingPage "1494" @default.
- W4376105324 abstract "ConspectusChemists have long been fascinated by chirality, water, and interfaces, making tremendous progress in each research area. However, the chemistry emerging from the interplay of chirality, water, and interfaces has been difficult to study due to technical challenges, creating a barrier to elucidating biological functions at interfaces. Most biopolymers (proteins, DNA, and RNA) fold into macroscopic chiral structures to perform biological functions. Their folding requires water, but water behaves differently at interfaces where the bulk water hydrogen-bonding network terminates. A question arises as to how water molecules rearrange to minimize free energy at interfaces while stabilizing the macroscopic folding of biopolymers to support biological function. This question is central to solving many research challenges, including the molecular origin of biological homochirality, folding and insertion of proteins into cell membranes, and the design of heterogeneous biocatalysts. Researchers can resolve these challenges if they have the theoretical tools to accurately predict molecular behaviors of water and biopolymers at various interfaces. However, developing such tools requires validation by the experimental data. These experimental data are scarce because few physical methods can simultaneously distinguish chiral folding of the biopolymers, separate signals of interfaces from the overwhelming background of bulk solvent, and differentiate water in hydration shells of the polymers from water elsewhere.We recently illustrated these very capacities of chirality-sensitive vibrational sum frequency generation spectroscopy (chiral SFG). While chiral SFG theory dictates that the method is surface-specific under the condition of electronic nonresonance, we show the method can distinguish chiral folding of proteins and DNA and probe water structures in the first hydration shell of proteins at interfaces. Using amide I signals, we observe protein folding into β-sheets without background signals from α-helices and disordered structures at interfaces, thereby demonstrating the effect of 2D crowding on protein folding. Also, chiral SFG signals of C–H stretches are silent from single-stranded DNA, but prominent for canonical antiparallel duplexes as well as noncanonical parallel duplexes at interfaces, allowing for sensing DNA secondary structures and hybridization. In establishing chiral SFG for detecting protein hydration structures, we observe an H218O isotopic shift that reveals water contribution to the chiral SFG spectra. Additionally, the phase of the O–H stretching bands flips when the protein chirality is switched from L to D. These experimental results agree with our simulated chiral SFG spectra of water hydrating the β-sheet protein at the vacuum-water interface. The simulations further reveal that over 90% of the total chiral SFG signal comes from water in the first hydration shell. We conclude that the chiral SFG signals originate from achiral water molecules that assemble around the protein into a chiral supramolecular structure with chirality transferred from the protein. As water O–H stretches can reveal hydrogen-bonding interactions, chiral SFG shows promise in probing the structures and dynamics of water-biopolymer interactions at interfaces. Altogether, our work has created an experimental and computational framework for chiral SFG to elucidate biological functions at interfaces, setting the stage for probing the intricate chemical interplay of chirality, water, and interfaces." @default.
- W4376105324 created "2023-05-12" @default.
- W4376105324 creator A5027095110 @default.
- W4376105324 creator A5041302371 @default.
- W4376105324 creator A5048780254 @default.
- W4376105324 creator A5087874966 @default.
- W4376105324 date "2023-05-10" @default.
- W4376105324 modified "2023-10-14" @default.
- W4376105324 title "Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions" @default.
- W4376105324 cites W1927422922 @default.
- W4376105324 cites W1963489430 @default.
- W4376105324 cites W1968591561 @default.
- W4376105324 cites W1977006706 @default.
- W4376105324 cites W1982219464 @default.
- W4376105324 cites W1991142343 @default.
- W4376105324 cites W1992045220 @default.
- W4376105324 cites W1998821564 @default.
- W4376105324 cites W2001724184 @default.
- W4376105324 cites W2010104737 @default.
- W4376105324 cites W2010433544 @default.
- W4376105324 cites W2012629862 @default.
- W4376105324 cites W2013107255 @default.
- W4376105324 cites W2017297771 @default.
- W4376105324 cites W2022710475 @default.
- W4376105324 cites W2027168767 @default.
- W4376105324 cites W2030361100 @default.
- W4376105324 cites W2036452049 @default.
- W4376105324 cites W2040079916 @default.
- W4376105324 cites W2040211368 @default.
- W4376105324 cites W2044109601 @default.
- W4376105324 cites W2051715193 @default.
- W4376105324 cites W2052412840 @default.
- W4376105324 cites W2055465627 @default.
- W4376105324 cites W2057876883 @default.
- W4376105324 cites W2058904748 @default.
- W4376105324 cites W2070206101 @default.
- W4376105324 cites W2070520371 @default.
- W4376105324 cites W2071375115 @default.
- W4376105324 cites W2071799231 @default.
- W4376105324 cites W2079685644 @default.
- W4376105324 cites W2093720304 @default.
- W4376105324 cites W2098908528 @default.
- W4376105324 cites W2104529244 @default.
- W4376105324 cites W2113194872 @default.
- W4376105324 cites W2121242766 @default.
- W4376105324 cites W2157477555 @default.
- W4376105324 cites W2226768 @default.
- W4376105324 cites W2238488364 @default.
- W4376105324 cites W2321069291 @default.
- W4376105324 cites W2323762690 @default.
- W4376105324 cites W2395256178 @default.
- W4376105324 cites W2611593376 @default.
- W4376105324 cites W2618538917 @default.
- W4376105324 cites W2785251935 @default.
- W4376105324 cites W2886244318 @default.
- W4376105324 cites W2909803703 @default.
- W4376105324 cites W2944316450 @default.
- W4376105324 cites W2952453375 @default.
- W4376105324 cites W3000530096 @default.
- W4376105324 cites W3112908167 @default.
- W4376105324 cites W3208941569 @default.
- W4376105324 cites W4224981101 @default.
- W4376105324 cites W4249067304 @default.
- W4376105324 cites W4294733073 @default.
- W4376105324 cites W4324130392 @default.
- W4376105324 doi "https://doi.org/10.1021/acs.accounts.3c00088" @default.
- W4376105324 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37163574" @default.
- W4376105324 hasPublicationYear "2023" @default.
- W4376105324 type Work @default.
- W4376105324 citedByCount "0" @default.
- W4376105324 crossrefType "journal-article" @default.
- W4376105324 hasAuthorship W4376105324A5027095110 @default.
- W4376105324 hasAuthorship W4376105324A5041302371 @default.
- W4376105324 hasAuthorship W4376105324A5048780254 @default.
- W4376105324 hasAuthorship W4376105324A5087874966 @default.
- W4376105324 hasConcept C119599485 @default.
- W4376105324 hasConcept C121332964 @default.
- W4376105324 hasConcept C124668440 @default.
- W4376105324 hasConcept C127413603 @default.
- W4376105324 hasConcept C146888428 @default.
- W4376105324 hasConcept C159467904 @default.
- W4376105324 hasConcept C171250308 @default.
- W4376105324 hasConcept C178790620 @default.
- W4376105324 hasConcept C185592680 @default.
- W4376105324 hasConcept C192562407 @default.
- W4376105324 hasConcept C20621625 @default.
- W4376105324 hasConcept C2776545253 @default.
- W4376105324 hasConcept C32909587 @default.
- W4376105324 hasConcept C486523 @default.
- W4376105324 hasConcept C49853544 @default.
- W4376105324 hasConcept C52703039 @default.
- W4376105324 hasConcept C62520636 @default.
- W4376105324 hasConcept C7602139 @default.
- W4376105324 hasConceptScore W4376105324C119599485 @default.
- W4376105324 hasConceptScore W4376105324C121332964 @default.
- W4376105324 hasConceptScore W4376105324C124668440 @default.
- W4376105324 hasConceptScore W4376105324C127413603 @default.
- W4376105324 hasConceptScore W4376105324C146888428 @default.