Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376106111> ?p ?o ?g. }
- W4376106111 abstract "Abstract Organizations widely use cloud computing to outsource their computing needs. One crucial issue of cloud computing is that services must be available to clients at all times. However, the cloud services may be temporarily unavailable due to maintenance of the cloud infrastructure, load balancing of services, defense against cyber attacks, power management, proactive fault tolerance, or resource usage. The unavailability of cloud services impacts negatively on the business model of cloud providers. One solution to tackle the service unavailability is Live Virtual Machine Migration (LVM), that is, moving virtual machines (VMs) from the source host machine to the destination host without disrupting the running application. Pre-copy memory migration is a common LVM approach used in most networked systems such as the cloud. The main difficulty with this approach is the high rate of frequently updating memory pages, referred to as dirty pages. Transferring these updated or dirty pages during the pre-copy migration approach prolongs the total migration time. After a predefined iteration, the pre-copy approach enters the stop-and-copy phase and transfers the remaining memory pages. If the remaining pages are huge, the downtime or service unavailability will be very high -resulting in a negative impact on the availability of the running services. To minimize such service downtime, it is critical to find an optimal time to migrate a virtual machine in the pre-copy approach. To address the issue, this paper proposes a machine learning-based method to optimize pre-copy migration. It has mainly three stages (i) Feature selection (ii) Model generation and (iii) Application of the proposed model in pre-copy migration. The experiment results show that our proposed model outperforms other machine learning models in terms of prediction accuracy and it significantly reduces downtime or service unavailability during the migration process." @default.
- W4376106111 created "2023-05-12" @default.
- W4376106111 creator A5031450255 @default.
- W4376106111 creator A5035889360 @default.
- W4376106111 creator A5044957862 @default.
- W4376106111 creator A5077355226 @default.
- W4376106111 date "2023-05-09" @default.
- W4376106111 modified "2023-10-09" @default.
- W4376106111 title "A machine learning-based optimization approach for pre-copy live virtual machine migration" @default.
- W4376106111 cites W101437197 @default.
- W4376106111 cites W1514101368 @default.
- W4376106111 cites W1965370830 @default.
- W4376106111 cites W1976793531 @default.
- W4376106111 cites W1985082033 @default.
- W4376106111 cites W2009927598 @default.
- W4376106111 cites W2010489945 @default.
- W4376106111 cites W2018211658 @default.
- W4376106111 cites W2022614837 @default.
- W4376106111 cites W2035527858 @default.
- W4376106111 cites W2050055903 @default.
- W4376106111 cites W2050137749 @default.
- W4376106111 cites W2057091443 @default.
- W4376106111 cites W2061827158 @default.
- W4376106111 cites W2067165696 @default.
- W4376106111 cites W2071341597 @default.
- W4376106111 cites W2071519731 @default.
- W4376106111 cites W2088252378 @default.
- W4376106111 cites W2088257029 @default.
- W4376106111 cites W2096874889 @default.
- W4376106111 cites W2104105007 @default.
- W4376106111 cites W2125895608 @default.
- W4376106111 cites W2129018774 @default.
- W4376106111 cites W2139058102 @default.
- W4376106111 cites W2167101736 @default.
- W4376106111 cites W2270330859 @default.
- W4376106111 cites W2320671398 @default.
- W4376106111 cites W2405371196 @default.
- W4376106111 cites W2469063337 @default.
- W4376106111 cites W2492294785 @default.
- W4376106111 cites W2562101031 @default.
- W4376106111 cites W2597209872 @default.
- W4376106111 cites W2607281691 @default.
- W4376106111 cites W2760528149 @default.
- W4376106111 cites W2781221005 @default.
- W4376106111 cites W2783902509 @default.
- W4376106111 cites W2788815399 @default.
- W4376106111 cites W2791315675 @default.
- W4376106111 cites W2810979305 @default.
- W4376106111 cites W2824254092 @default.
- W4376106111 cites W2889569642 @default.
- W4376106111 cites W2891813281 @default.
- W4376106111 cites W2910983495 @default.
- W4376106111 cites W2914819361 @default.
- W4376106111 cites W2915626801 @default.
- W4376106111 cites W2919949041 @default.
- W4376106111 cites W2940806880 @default.
- W4376106111 cites W2955803596 @default.
- W4376106111 cites W2978725006 @default.
- W4376106111 cites W3005596267 @default.
- W4376106111 cites W3011409250 @default.
- W4376106111 cites W3033872090 @default.
- W4376106111 cites W3045004532 @default.
- W4376106111 cites W3046505149 @default.
- W4376106111 cites W3123291924 @default.
- W4376106111 cites W3127246082 @default.
- W4376106111 cites W3149753187 @default.
- W4376106111 cites W3155821744 @default.
- W4376106111 cites W3164308932 @default.
- W4376106111 cites W3170683247 @default.
- W4376106111 cites W3181230722 @default.
- W4376106111 cites W3186962463 @default.
- W4376106111 cites W3192250326 @default.
- W4376106111 cites W3198500239 @default.
- W4376106111 cites W3203844570 @default.
- W4376106111 cites W4207041297 @default.
- W4376106111 cites W4244451027 @default.
- W4376106111 doi "https://doi.org/10.1007/s10586-023-04001-1" @default.
- W4376106111 hasPublicationYear "2023" @default.
- W4376106111 type Work @default.
- W4376106111 citedByCount "1" @default.
- W4376106111 crossrefType "journal-article" @default.
- W4376106111 hasAuthorship W4376106111A5031450255 @default.
- W4376106111 hasAuthorship W4376106111A5035889360 @default.
- W4376106111 hasAuthorship W4376106111A5044957862 @default.
- W4376106111 hasAuthorship W4376106111A5077355226 @default.
- W4376106111 hasBestOaLocation W43761061111 @default.
- W4376106111 hasConcept C111919701 @default.
- W4376106111 hasConcept C120314980 @default.
- W4376106111 hasConcept C126831891 @default.
- W4376106111 hasConcept C127413603 @default.
- W4376106111 hasConcept C136264566 @default.
- W4376106111 hasConcept C162324750 @default.
- W4376106111 hasConcept C17744445 @default.
- W4376106111 hasConcept C180591934 @default.
- W4376106111 hasConcept C18903297 @default.
- W4376106111 hasConcept C199539241 @default.
- W4376106111 hasConcept C200601418 @default.
- W4376106111 hasConcept C25344961 @default.
- W4376106111 hasConcept C2778710394 @default.
- W4376106111 hasConcept C2780378061 @default.