Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376106875> ?p ?o ?g. }
- W4376106875 endingPage "065018" @default.
- W4376106875 startingPage "065018" @default.
- W4376106875 abstract "Abstract In this paper, a novel impact load identification and localization method on actual engineering structures using machine learning is proposed. Three machine learning models, including a gradient boosting decision tree (GBDT) model based on ensemble learning, a convolutional neural network (CNN) model and a bidirectional long short-term memory (BLSTM) model based on deep learning, are trained to directly identify and locate impact loads according to dynamic response. The GBDT model and the CNN model can reversely identify force peak and location of impact loads. The BLSTM model can reconstruct the time history of impact loads. The method is verified on a thin-walled cylinder with obvious nonlinearity. The result shows that the method can accurately identify impact loads and its location. The characteristics of the three models are compared and the influence of structural boundary conditions on the accuracy of identification is discussed. The proposed method has the potential to be applied to various engineering structures and multiple load types." @default.
- W4376106875 created "2023-05-12" @default.
- W4376106875 creator A5003897640 @default.
- W4376106875 creator A5028203797 @default.
- W4376106875 creator A5047696788 @default.
- W4376106875 creator A5067316020 @default.
- W4376106875 creator A5086264733 @default.
- W4376106875 date "2023-05-18" @default.
- W4376106875 modified "2023-10-15" @default.
- W4376106875 title "Impact load identification and localization method on thin-walled cylinders using machine learning" @default.
- W4376106875 cites W1498436455 @default.
- W4376106875 cites W151499024 @default.
- W4376106875 cites W1575387439 @default.
- W4376106875 cites W1968976995 @default.
- W4376106875 cites W1971399343 @default.
- W4376106875 cites W1984931063 @default.
- W4376106875 cites W1988790447 @default.
- W4376106875 cites W1989668032 @default.
- W4376106875 cites W1996021349 @default.
- W4376106875 cites W2009927598 @default.
- W4376106875 cites W2021791880 @default.
- W4376106875 cites W2031726500 @default.
- W4376106875 cites W2044250768 @default.
- W4376106875 cites W2049287680 @default.
- W4376106875 cites W2056132907 @default.
- W4376106875 cites W2064675550 @default.
- W4376106875 cites W2073580155 @default.
- W4376106875 cites W2082519553 @default.
- W4376106875 cites W2088252378 @default.
- W4376106875 cites W2091962998 @default.
- W4376106875 cites W2107418518 @default.
- W4376106875 cites W2107878631 @default.
- W4376106875 cites W2112796928 @default.
- W4376106875 cites W2122825543 @default.
- W4376106875 cites W2123947801 @default.
- W4376106875 cites W2129421759 @default.
- W4376106875 cites W2160047866 @default.
- W4376106875 cites W2160815625 @default.
- W4376106875 cites W2514357670 @default.
- W4376106875 cites W2739460174 @default.
- W4376106875 cites W2758251210 @default.
- W4376106875 cites W2790204037 @default.
- W4376106875 cites W2887265096 @default.
- W4376106875 cites W2911964244 @default.
- W4376106875 cites W2919115771 @default.
- W4376106875 cites W2936941241 @default.
- W4376106875 cites W2939407295 @default.
- W4376106875 cites W2944851425 @default.
- W4376106875 cites W2946314453 @default.
- W4376106875 cites W2962949934 @default.
- W4376106875 cites W2969006849 @default.
- W4376106875 cites W2979663010 @default.
- W4376106875 cites W2991018831 @default.
- W4376106875 cites W3016528911 @default.
- W4376106875 cites W3128782210 @default.
- W4376106875 cites W3157327715 @default.
- W4376106875 cites W3158439948 @default.
- W4376106875 cites W4200092203 @default.
- W4376106875 cites W4212883601 @default.
- W4376106875 cites W4220811424 @default.
- W4376106875 cites W4226388777 @default.
- W4376106875 cites W4232280717 @default.
- W4376106875 cites W4327703566 @default.
- W4376106875 cites W2114998486 @default.
- W4376106875 doi "https://doi.org/10.1088/1361-665x/acd3c8" @default.
- W4376106875 hasPublicationYear "2023" @default.
- W4376106875 type Work @default.
- W4376106875 citedByCount "0" @default.
- W4376106875 crossrefType "journal-article" @default.
- W4376106875 hasAuthorship W4376106875A5003897640 @default.
- W4376106875 hasAuthorship W4376106875A5028203797 @default.
- W4376106875 hasAuthorship W4376106875A5047696788 @default.
- W4376106875 hasAuthorship W4376106875A5067316020 @default.
- W4376106875 hasAuthorship W4376106875A5086264733 @default.
- W4376106875 hasConcept C116834253 @default.
- W4376106875 hasConcept C119857082 @default.
- W4376106875 hasConcept C121332964 @default.
- W4376106875 hasConcept C127413603 @default.
- W4376106875 hasConcept C153180895 @default.
- W4376106875 hasConcept C154945302 @default.
- W4376106875 hasConcept C158622935 @default.
- W4376106875 hasConcept C203311528 @default.
- W4376106875 hasConcept C41008148 @default.
- W4376106875 hasConcept C46686674 @default.
- W4376106875 hasConcept C50644808 @default.
- W4376106875 hasConcept C59822182 @default.
- W4376106875 hasConcept C62520636 @default.
- W4376106875 hasConcept C78519656 @default.
- W4376106875 hasConcept C81363708 @default.
- W4376106875 hasConcept C84525736 @default.
- W4376106875 hasConcept C86803240 @default.
- W4376106875 hasConceptScore W4376106875C116834253 @default.
- W4376106875 hasConceptScore W4376106875C119857082 @default.
- W4376106875 hasConceptScore W4376106875C121332964 @default.
- W4376106875 hasConceptScore W4376106875C127413603 @default.
- W4376106875 hasConceptScore W4376106875C153180895 @default.
- W4376106875 hasConceptScore W4376106875C154945302 @default.
- W4376106875 hasConceptScore W4376106875C158622935 @default.