Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376107468> ?p ?o ?g. }
- W4376107468 abstract "Atomic simulations using machine learning interatomic potential (MLIP) have gained a lot of popularity owing to their accuracy in comparison to conventional empirical potentials. However, the transferability of MLIP to systems outside the training set poses a significant challenge. Here, we compare the transferability of three MLIP approaches: (i) neural network potentials (NNP), (ii) physical LassoLars interactions potential (PLIP) and (iii) linear potentials with Belher-Parrinello descriptors, trained over a small but diverse configuration of zinc oxide polymorphs. We compared the obtained models with density functional theory reference results for physical properties including bulk lattice parameters, surface energies, and vibrational density of states and showed the superiority of both NNP and PLIP models. However, the NNP model performed poorly when compared to the other two linear models for the structural optimization of nanoparticles and molecular dynamics simulation of liquid phases, which are systems outside the training set. While providing less accurate prediction for solid Zinc Oxides phases, both linear models appear more transferable than NNP when testing for nanoscale systems and liquid phases. Our results are finally rationalized by a combination of different statistical analysis including spread in force evaluation, information imbalance, convex hull calculation, and density in descriptor space." @default.
- W4376107468 created "2023-05-12" @default.
- W4376107468 creator A5005805628 @default.
- W4376107468 creator A5028915057 @default.
- W4376107468 creator A5078313476 @default.
- W4376107468 creator A5086431916 @default.
- W4376107468 creator A5090101032 @default.
- W4376107468 date "2023-05-10" @default.
- W4376107468 modified "2023-09-30" @default.
- W4376107468 title "Comparing transferability in neural network approaches and linear models for machine-learning interaction potentials" @default.
- W4376107468 cites W1499888549 @default.
- W4376107468 cites W1861259131 @default.
- W4376107468 cites W1974672343 @default.
- W4376107468 cites W1979544533 @default.
- W4376107468 cites W1981368803 @default.
- W4376107468 cites W2012121165 @default.
- W4376107468 cites W2019465613 @default.
- W4376107468 cites W2025444507 @default.
- W4376107468 cites W2049131819 @default.
- W4376107468 cites W2053117030 @default.
- W4376107468 cites W2079105963 @default.
- W4376107468 cites W2083222334 @default.
- W4376107468 cites W2083415705 @default.
- W4376107468 cites W2197007850 @default.
- W4376107468 cites W2524276051 @default.
- W4376107468 cites W2530960271 @default.
- W4376107468 cites W2547447472 @default.
- W4376107468 cites W2566642125 @default.
- W4376107468 cites W2585152223 @default.
- W4376107468 cites W26088913 @default.
- W4376107468 cites W2620687153 @default.
- W4376107468 cites W2640564814 @default.
- W4376107468 cites W2754478492 @default.
- W4376107468 cites W2786552191 @default.
- W4376107468 cites W2792137452 @default.
- W4376107468 cites W2792521034 @default.
- W4376107468 cites W2799063346 @default.
- W4376107468 cites W2800301423 @default.
- W4376107468 cites W2891703087 @default.
- W4376107468 cites W2897388712 @default.
- W4376107468 cites W2910436199 @default.
- W4376107468 cites W2910857709 @default.
- W4376107468 cites W2914218087 @default.
- W4376107468 cites W2922733622 @default.
- W4376107468 cites W2939169979 @default.
- W4376107468 cites W2943967157 @default.
- W4376107468 cites W2963159296 @default.
- W4376107468 cites W2971894235 @default.
- W4376107468 cites W2972809006 @default.
- W4376107468 cites W3036640743 @default.
- W4376107468 cites W3098472025 @default.
- W4376107468 cites W3099813870 @default.
- W4376107468 cites W3100571530 @default.
- W4376107468 cites W3102033477 @default.
- W4376107468 cites W3102448310 @default.
- W4376107468 cites W3103421232 @default.
- W4376107468 cites W3104386565 @default.
- W4376107468 cites W3105239133 @default.
- W4376107468 cites W3105711352 @default.
- W4376107468 cites W3106310231 @default.
- W4376107468 cites W3139366207 @default.
- W4376107468 cites W3157478677 @default.
- W4376107468 cites W3164680271 @default.
- W4376107468 cites W3195531176 @default.
- W4376107468 cites W3201073812 @default.
- W4376107468 cites W3215255282 @default.
- W4376107468 cites W4207013141 @default.
- W4376107468 cites W4224233308 @default.
- W4376107468 cites W4225405705 @default.
- W4376107468 cites W832976576 @default.
- W4376107468 doi "https://doi.org/10.1103/physrevb.107.174106" @default.
- W4376107468 hasPublicationYear "2023" @default.
- W4376107468 type Work @default.
- W4376107468 citedByCount "0" @default.
- W4376107468 crossrefType "journal-article" @default.
- W4376107468 hasAuthorship W4376107468A5005805628 @default.
- W4376107468 hasAuthorship W4376107468A5028915057 @default.
- W4376107468 hasAuthorship W4376107468A5078313476 @default.
- W4376107468 hasAuthorship W4376107468A5086431916 @default.
- W4376107468 hasAuthorship W4376107468A5090101032 @default.
- W4376107468 hasConcept C112680207 @default.
- W4376107468 hasConcept C119857082 @default.
- W4376107468 hasConcept C121332964 @default.
- W4376107468 hasConcept C121864883 @default.
- W4376107468 hasConcept C140331021 @default.
- W4376107468 hasConcept C147597530 @default.
- W4376107468 hasConcept C152365726 @default.
- W4376107468 hasConcept C154945302 @default.
- W4376107468 hasConcept C185592680 @default.
- W4376107468 hasConcept C192562407 @default.
- W4376107468 hasConcept C206194317 @default.
- W4376107468 hasConcept C24890656 @default.
- W4376107468 hasConcept C2524010 @default.
- W4376107468 hasConcept C2776372370 @default.
- W4376107468 hasConcept C2781204021 @default.
- W4376107468 hasConcept C33923547 @default.
- W4376107468 hasConcept C41008148 @default.
- W4376107468 hasConcept C50644808 @default.
- W4376107468 hasConcept C59593255 @default.
- W4376107468 hasConcept C61272859 @default.