Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376116120> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4376116120 endingPage "1683" @default.
- W4376116120 startingPage "1683" @default.
- W4376116120 abstract "Knowledge about the anatomical structures of the left heart, specifically the atrium (LA) and ventricle (i.e., endocardium-Vendo-and epicardium-LVepi) is essential for the evaluation of cardiac functionality. Manual segmentation of cardiac structures from echocardiography is the baseline reference, but results are user-dependent and time-consuming. With the aim of supporting clinical practice, this paper presents a new deep-learning (DL)-based tool for segmenting anatomical structures of the left heart from echocardiographic images. Specifically, it was designed as a combination of two convolutional neural networks, the YOLOv7 algorithm and a U-Net, and it aims to automatically segment an echocardiographic image into LVendo, LVepi and LA. The DL-based tool was trained and tested on the Cardiac Acquisitions for Multi-Structure Ultrasound Segmentation (CAMUS) dataset of the University Hospital of St. Etienne, which consists of echocardiographic images from 450 patients. For each patient, apical two- and four-chamber views at end-systole and end-diastole were acquired and annotated by clinicians. Globally, our DL-based tool was able to segment LVendo, LVepi and LA, providing Dice similarity coefficients equal to 92.63%, 85.59%, and 87.57%, respectively. In conclusion, the presented DL-based tool proved to be reliable in automatically segmenting the anatomical structures of the left heart and supporting the cardiological clinical practice." @default.
- W4376116120 created "2023-05-12" @default.
- W4376116120 creator A5017957196 @default.
- W4376116120 creator A5040921532 @default.
- W4376116120 creator A5068731989 @default.
- W4376116120 creator A5075463398 @default.
- W4376116120 creator A5091455235 @default.
- W4376116120 creator A5091919309 @default.
- W4376116120 date "2023-05-09" @default.
- W4376116120 modified "2023-09-25" @default.
- W4376116120 title "Segmentation of Anatomical Structures of the Left Heart from Echocardiographic Images Using Deep Learning" @default.
- W4376116120 cites W2139748468 @default.
- W4376116120 cites W2163882804 @default.
- W4376116120 cites W2313077061 @default.
- W4376116120 cites W2546280627 @default.
- W4376116120 cites W2963037989 @default.
- W4376116120 cites W2966284335 @default.
- W4376116120 cites W2982468271 @default.
- W4376116120 cites W3021528551 @default.
- W4376116120 cites W3093273221 @default.
- W4376116120 cites W3101612813 @default.
- W4376116120 cites W3103215654 @default.
- W4376116120 cites W3111746968 @default.
- W4376116120 cites W3132455321 @default.
- W4376116120 cites W3133281654 @default.
- W4376116120 cites W3135303140 @default.
- W4376116120 cites W3161394363 @default.
- W4376116120 cites W4254757478 @default.
- W4376116120 cites W4283783398 @default.
- W4376116120 cites W4297476735 @default.
- W4376116120 cites W4313588240 @default.
- W4376116120 cites W4317038436 @default.
- W4376116120 cites W4323052144 @default.
- W4376116120 doi "https://doi.org/10.3390/diagnostics13101683" @default.
- W4376116120 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37238168" @default.
- W4376116120 hasPublicationYear "2023" @default.
- W4376116120 type Work @default.
- W4376116120 citedByCount "1" @default.
- W4376116120 countsByYear W43761161202023 @default.
- W4376116120 crossrefType "journal-article" @default.
- W4376116120 hasAuthorship W4376116120A5017957196 @default.
- W4376116120 hasAuthorship W4376116120A5040921532 @default.
- W4376116120 hasAuthorship W4376116120A5068731989 @default.
- W4376116120 hasAuthorship W4376116120A5075463398 @default.
- W4376116120 hasAuthorship W4376116120A5091455235 @default.
- W4376116120 hasAuthorship W4376116120A5091919309 @default.
- W4376116120 hasBestOaLocation W43761161201 @default.
- W4376116120 hasConcept C108583219 @default.
- W4376116120 hasConcept C126322002 @default.
- W4376116120 hasConcept C153180895 @default.
- W4376116120 hasConcept C154945302 @default.
- W4376116120 hasConcept C2778921608 @default.
- W4376116120 hasConcept C2779974597 @default.
- W4376116120 hasConcept C31972630 @default.
- W4376116120 hasConcept C41008148 @default.
- W4376116120 hasConcept C512399662 @default.
- W4376116120 hasConcept C71924100 @default.
- W4376116120 hasConcept C81363708 @default.
- W4376116120 hasConcept C85378888 @default.
- W4376116120 hasConcept C89600930 @default.
- W4376116120 hasConceptScore W4376116120C108583219 @default.
- W4376116120 hasConceptScore W4376116120C126322002 @default.
- W4376116120 hasConceptScore W4376116120C153180895 @default.
- W4376116120 hasConceptScore W4376116120C154945302 @default.
- W4376116120 hasConceptScore W4376116120C2778921608 @default.
- W4376116120 hasConceptScore W4376116120C2779974597 @default.
- W4376116120 hasConceptScore W4376116120C31972630 @default.
- W4376116120 hasConceptScore W4376116120C41008148 @default.
- W4376116120 hasConceptScore W4376116120C512399662 @default.
- W4376116120 hasConceptScore W4376116120C71924100 @default.
- W4376116120 hasConceptScore W4376116120C81363708 @default.
- W4376116120 hasConceptScore W4376116120C85378888 @default.
- W4376116120 hasConceptScore W4376116120C89600930 @default.
- W4376116120 hasIssue "10" @default.
- W4376116120 hasLocation W43761161201 @default.
- W4376116120 hasLocation W43761161202 @default.
- W4376116120 hasLocation W43761161203 @default.
- W4376116120 hasOpenAccess W4376116120 @default.
- W4376116120 hasPrimaryLocation W43761161201 @default.
- W4376116120 hasRelatedWork W2005437358 @default.
- W4376116120 hasRelatedWork W2517104666 @default.
- W4376116120 hasRelatedWork W2731899572 @default.
- W4376116120 hasRelatedWork W2790662084 @default.
- W4376116120 hasRelatedWork W2999805992 @default.
- W4376116120 hasRelatedWork W3116150086 @default.
- W4376116120 hasRelatedWork W3133861977 @default.
- W4376116120 hasRelatedWork W4200173597 @default.
- W4376116120 hasRelatedWork W4312417841 @default.
- W4376116120 hasRelatedWork W4321369474 @default.
- W4376116120 hasVolume "13" @default.
- W4376116120 isParatext "false" @default.
- W4376116120 isRetracted "false" @default.
- W4376116120 workType "article" @default.