Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376116393> ?p ?o ?g. }
- W4376116393 endingPage "116098" @default.
- W4376116393 startingPage "116098" @default.
- W4376116393 abstract "Biochar application is a promising strategy for the immobilization of heavy metal (HM)-contaminated soil, while it is always time-consuming and labor-intensive to clarify key influenced factors of soil HM immobilization by biochar. In this study, four machine learning algorithms, namely random forest (RF), support vector machine (SVR), Gradient boosting decision trees (GBDT), and Linear regression (LR) are employed to predict the HMimmobilization ratio. The RF was the best-performance ML model (Training R2 = 0.90, Testing R2 = 0.85, RMSE = 4.4, MAE = 2.18). The experiment verification based on the optimal RF model showed that the experiment verification was successful, as the results were comparable to the RF modeling results with a prediction error<20%. Shapley additive explanation and partial least squares path model method were used to identify the critical factors and direct and indirect effects of these features on the immobilization ratio. Furthermore, independent models of four HM (Cd, Cu, Pb, and Zn) also achieved better model prediction performance. Feature importance and interactions relationship of influenced factors for individual HM immobilization ratio was clarified. This work can provide a new insight for HM immobilization in soils." @default.
- W4376116393 created "2023-05-12" @default.
- W4376116393 creator A5014366892 @default.
- W4376116393 creator A5043558796 @default.
- W4376116393 creator A5061340361 @default.
- W4376116393 creator A5073392206 @default.
- W4376116393 creator A5087096764 @default.
- W4376116393 date "2023-08-01" @default.
- W4376116393 modified "2023-10-03" @default.
- W4376116393 title "Application of heavy metal immobilization in soil by biochar using machine learning" @default.
- W4376116393 cites W1477977232 @default.
- W4376116393 cites W1965405253 @default.
- W4376116393 cites W2050900949 @default.
- W4376116393 cites W2051484655 @default.
- W4376116393 cites W2080965447 @default.
- W4376116393 cites W2084537932 @default.
- W4376116393 cites W2206956996 @default.
- W4376116393 cites W2300327991 @default.
- W4376116393 cites W2537911855 @default.
- W4376116393 cites W2602874887 @default.
- W4376116393 cites W2757714583 @default.
- W4376116393 cites W2797855184 @default.
- W4376116393 cites W2810421063 @default.
- W4376116393 cites W2886734455 @default.
- W4376116393 cites W2887063908 @default.
- W4376116393 cites W2893818424 @default.
- W4376116393 cites W2900936310 @default.
- W4376116393 cites W2901460451 @default.
- W4376116393 cites W2908160114 @default.
- W4376116393 cites W2911766647 @default.
- W4376116393 cites W2914462422 @default.
- W4376116393 cites W2943463614 @default.
- W4376116393 cites W2947116544 @default.
- W4376116393 cites W2949006411 @default.
- W4376116393 cites W2990035075 @default.
- W4376116393 cites W2990558730 @default.
- W4376116393 cites W3002121381 @default.
- W4376116393 cites W3009354363 @default.
- W4376116393 cites W3015782924 @default.
- W4376116393 cites W3044798947 @default.
- W4376116393 cites W3048716975 @default.
- W4376116393 cites W3084731547 @default.
- W4376116393 cites W3084813728 @default.
- W4376116393 cites W3090267981 @default.
- W4376116393 cites W3111134936 @default.
- W4376116393 cites W3112018506 @default.
- W4376116393 cites W3157903270 @default.
- W4376116393 cites W3176339206 @default.
- W4376116393 cites W3185819222 @default.
- W4376116393 cites W3200060725 @default.
- W4376116393 cites W3212947954 @default.
- W4376116393 cites W4200175680 @default.
- W4376116393 cites W4205699134 @default.
- W4376116393 cites W4206953506 @default.
- W4376116393 cites W4220816311 @default.
- W4376116393 cites W4283333168 @default.
- W4376116393 doi "https://doi.org/10.1016/j.envres.2023.116098" @default.
- W4376116393 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37172676" @default.
- W4376116393 hasPublicationYear "2023" @default.
- W4376116393 type Work @default.
- W4376116393 citedByCount "1" @default.
- W4376116393 countsByYear W43761163932023 @default.
- W4376116393 crossrefType "journal-article" @default.
- W4376116393 hasAuthorship W4376116393A5014366892 @default.
- W4376116393 hasAuthorship W4376116393A5043558796 @default.
- W4376116393 hasAuthorship W4376116393A5061340361 @default.
- W4376116393 hasAuthorship W4376116393A5073392206 @default.
- W4376116393 hasAuthorship W4376116393A5087096764 @default.
- W4376116393 hasConcept C105795698 @default.
- W4376116393 hasConcept C119857082 @default.
- W4376116393 hasConcept C12267149 @default.
- W4376116393 hasConcept C139945424 @default.
- W4376116393 hasConcept C154945302 @default.
- W4376116393 hasConcept C159390177 @default.
- W4376116393 hasConcept C159750122 @default.
- W4376116393 hasConcept C169258074 @default.
- W4376116393 hasConcept C178790620 @default.
- W4376116393 hasConcept C185592680 @default.
- W4376116393 hasConcept C22354355 @default.
- W4376116393 hasConcept C33923547 @default.
- W4376116393 hasConcept C36759035 @default.
- W4376116393 hasConcept C39432304 @default.
- W4376116393 hasConcept C41008148 @default.
- W4376116393 hasConcept C46686674 @default.
- W4376116393 hasConcept C48921125 @default.
- W4376116393 hasConcept C56085101 @default.
- W4376116393 hasConcept C70153297 @default.
- W4376116393 hasConcept C84525736 @default.
- W4376116393 hasConceptScore W4376116393C105795698 @default.
- W4376116393 hasConceptScore W4376116393C119857082 @default.
- W4376116393 hasConceptScore W4376116393C12267149 @default.
- W4376116393 hasConceptScore W4376116393C139945424 @default.
- W4376116393 hasConceptScore W4376116393C154945302 @default.
- W4376116393 hasConceptScore W4376116393C159390177 @default.
- W4376116393 hasConceptScore W4376116393C159750122 @default.
- W4376116393 hasConceptScore W4376116393C169258074 @default.
- W4376116393 hasConceptScore W4376116393C178790620 @default.
- W4376116393 hasConceptScore W4376116393C185592680 @default.