Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376116981> ?p ?o ?g. }
- W4376116981 endingPage "137372" @default.
- W4376116981 startingPage "137372" @default.
- W4376116981 abstract "A hidden Markov model based on Bayesian belief network optimization (BBN-HMM) is introduced to achieve accurate evaluations of flood disaster resilience without a training set. The 15 farms under the jurisdiction of the Jiansanjiang Branch of the China Beidahuang Land Reclamation Group Co., Ltd., are studied, and a sensitivity analysis is conducted. The results show that the weight design of the comprehensive flood control safety index displays obvious differences among different farms. An analysis of the spatiotemporal evolution of resilience shows that from 1996 to 2004, the resilience in the entire region remained at a relatively low level, and the level in the central region was slightly higher than that in the surrounding areas. From 2004 to 2008, the resilience level of central farms declined, and after that, the resilience levels of central and eastern farms increased significantly. However, by 2020, the Qindeli, Qinglongshan and Qianjin farms only reached level II, experiencing potential flood hazards. In 2008, the main driving force for the decline in the resilience of the Yalvhe, Honghe, Qianjin and Erdaohe farms was the proportion of water conservancy projects in the GDP and the ratio of tertiary industry to GDP. In 2020, the main driving force for the resilience level of the five farms with level comprehensive V resilience, Qianjin, Chuangye, Qianfeng, Yalvhe and Erdaohe, was GDP per capita. Based on the composition weight of the comprehensive flood control safety index, the construction indexes are selected, and a scenario simulation for the next 10 years is performed to guide the improvement of resilience. After conducting a consistency test and evaluations involving precision, rationality and stability, it is proven that the model has significant advantages in performance." @default.
- W4376116981 created "2023-05-12" @default.
- W4376116981 creator A5010453309 @default.
- W4376116981 creator A5027136415 @default.
- W4376116981 creator A5027578647 @default.
- W4376116981 creator A5031928474 @default.
- W4376116981 creator A5038253545 @default.
- W4376116981 creator A5043966917 @default.
- W4376116981 creator A5044883230 @default.
- W4376116981 creator A5091919558 @default.
- W4376116981 date "2023-08-01" @default.
- W4376116981 modified "2023-10-07" @default.
- W4376116981 title "A new method for flood disaster resilience evaluation: A hidden markov model based on Bayesian belief network optimization" @default.
- W4376116981 cites W1671111194 @default.
- W4376116981 cites W1986465678 @default.
- W4376116981 cites W2006237718 @default.
- W4376116981 cites W2019262216 @default.
- W4376116981 cites W2045846892 @default.
- W4376116981 cites W2048669711 @default.
- W4376116981 cites W2057669676 @default.
- W4376116981 cites W2067402552 @default.
- W4376116981 cites W2086290199 @default.
- W4376116981 cites W2098128908 @default.
- W4376116981 cites W2101465865 @default.
- W4376116981 cites W2159329043 @default.
- W4376116981 cites W2297085710 @default.
- W4376116981 cites W2418673645 @default.
- W4376116981 cites W2613585029 @default.
- W4376116981 cites W2809099638 @default.
- W4376116981 cites W2811442890 @default.
- W4376116981 cites W2888613462 @default.
- W4376116981 cites W2891978349 @default.
- W4376116981 cites W2892928733 @default.
- W4376116981 cites W2896390918 @default.
- W4376116981 cites W2901994258 @default.
- W4376116981 cites W2911821425 @default.
- W4376116981 cites W2933093846 @default.
- W4376116981 cites W2933571352 @default.
- W4376116981 cites W2946928081 @default.
- W4376116981 cites W2972601952 @default.
- W4376116981 cites W2975371345 @default.
- W4376116981 cites W2981831925 @default.
- W4376116981 cites W2986850090 @default.
- W4376116981 cites W2990064447 @default.
- W4376116981 cites W2990162588 @default.
- W4376116981 cites W2995871326 @default.
- W4376116981 cites W2998258435 @default.
- W4376116981 cites W2999570460 @default.
- W4376116981 cites W3006298809 @default.
- W4376116981 cites W3008308101 @default.
- W4376116981 cites W3035699269 @default.
- W4376116981 cites W3047396557 @default.
- W4376116981 cites W3101537948 @default.
- W4376116981 cites W3110890589 @default.
- W4376116981 cites W3147254695 @default.
- W4376116981 cites W3155964842 @default.
- W4376116981 cites W3194815644 @default.
- W4376116981 cites W3199449770 @default.
- W4376116981 cites W4293777140 @default.
- W4376116981 cites W4317743475 @default.
- W4376116981 cites W588320544 @default.
- W4376116981 cites W915822719 @default.
- W4376116981 doi "https://doi.org/10.1016/j.jclepro.2023.137372" @default.
- W4376116981 hasPublicationYear "2023" @default.
- W4376116981 type Work @default.
- W4376116981 citedByCount "0" @default.
- W4376116981 crossrefType "journal-article" @default.
- W4376116981 hasAuthorship W4376116981A5010453309 @default.
- W4376116981 hasAuthorship W4376116981A5027136415 @default.
- W4376116981 hasAuthorship W4376116981A5027578647 @default.
- W4376116981 hasAuthorship W4376116981A5031928474 @default.
- W4376116981 hasAuthorship W4376116981A5038253545 @default.
- W4376116981 hasAuthorship W4376116981A5043966917 @default.
- W4376116981 hasAuthorship W4376116981A5044883230 @default.
- W4376116981 hasAuthorship W4376116981A5091919558 @default.
- W4376116981 hasConcept C107826830 @default.
- W4376116981 hasConcept C121332964 @default.
- W4376116981 hasConcept C127413603 @default.
- W4376116981 hasConcept C127598652 @default.
- W4376116981 hasConcept C136764020 @default.
- W4376116981 hasConcept C144024400 @default.
- W4376116981 hasConcept C149923435 @default.
- W4376116981 hasConcept C166957645 @default.
- W4376116981 hasConcept C205649164 @default.
- W4376116981 hasConcept C2777382242 @default.
- W4376116981 hasConcept C2779585090 @default.
- W4376116981 hasConcept C2908647359 @default.
- W4376116981 hasConcept C39432304 @default.
- W4376116981 hasConcept C41008148 @default.
- W4376116981 hasConcept C539955404 @default.
- W4376116981 hasConcept C74256435 @default.
- W4376116981 hasConcept C97355855 @default.
- W4376116981 hasConceptScore W4376116981C107826830 @default.
- W4376116981 hasConceptScore W4376116981C121332964 @default.
- W4376116981 hasConceptScore W4376116981C127413603 @default.
- W4376116981 hasConceptScore W4376116981C127598652 @default.
- W4376116981 hasConceptScore W4376116981C136764020 @default.
- W4376116981 hasConceptScore W4376116981C144024400 @default.