Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376130149> ?p ?o ?g. }
- W4376130149 endingPage "110388" @default.
- W4376130149 startingPage "110388" @default.
- W4376130149 abstract "Indoor temperature prediction is an essential component of building control and energy saving. Although existing indoor temperature prediction frameworks have achieved remarkable progress, they struggle to achieve high performance due to information, method, application, and sim-to-real gaps. Aiming to fill these gaps, we propose a novel deep-learning framework for short-term indoor temperature prediction in multi-zone buildings. In particular, we expand the sensing information and formulate the multi-zone indoor temperature prediction (MITP) problem. To improve the prediction performance, we employ information fusion and encoder–decoder architecture to the MITP problem and propose MITP-Net. We set up 11 ablation experiments to compare the prediction performance of relative frameworks. To evaluate frameworks’ performance, we publicly release a dataset including 2-week real operating data in a multi-zone office with a 1-min sampling interval (829,440 digits in total). Compared with existing deep-learning frameworks, MITP-Net significantly raises the prediction accuracy and can flexibly adjust the lengths of input and prediction sequences for different requirements. We provide the usage steps of MITP-Net and publish the operating data and codes on the GitHub repository: https://github.com/XingTian1994/MITP-Net." @default.
- W4376130149 created "2023-05-12" @default.
- W4376130149 creator A5014109600 @default.
- W4376130149 creator A5037880462 @default.
- W4376130149 creator A5051050175 @default.
- W4376130149 date "2023-07-01" @default.
- W4376130149 modified "2023-10-02" @default.
- W4376130149 title "MITP-Net: A deep-learning framework for short-term indoor temperature predictions in multi-zone buildings" @default.
- W4376130149 cites W1967379861 @default.
- W4376130149 cites W1973509551 @default.
- W4376130149 cites W1981780459 @default.
- W4376130149 cites W2000548672 @default.
- W4376130149 cites W2053101950 @default.
- W4376130149 cites W2069301212 @default.
- W4376130149 cites W2155889930 @default.
- W4376130149 cites W2157370613 @default.
- W4376130149 cites W2314153399 @default.
- W4376130149 cites W2319161637 @default.
- W4376130149 cites W2568808500 @default.
- W4376130149 cites W2730637336 @default.
- W4376130149 cites W2766881562 @default.
- W4376130149 cites W2794469369 @default.
- W4376130149 cites W2796367989 @default.
- W4376130149 cites W2809957454 @default.
- W4376130149 cites W2889794315 @default.
- W4376130149 cites W2898132601 @default.
- W4376130149 cites W2898978958 @default.
- W4376130149 cites W2909436466 @default.
- W4376130149 cites W2926397283 @default.
- W4376130149 cites W2937445681 @default.
- W4376130149 cites W2948953355 @default.
- W4376130149 cites W2949449669 @default.
- W4376130149 cites W2952077590 @default.
- W4376130149 cites W2952104003 @default.
- W4376130149 cites W2975022909 @default.
- W4376130149 cites W2977148634 @default.
- W4376130149 cites W3008571545 @default.
- W4376130149 cites W3011126096 @default.
- W4376130149 cites W3034251609 @default.
- W4376130149 cites W3095810316 @default.
- W4376130149 cites W3096394522 @default.
- W4376130149 cites W3104887532 @default.
- W4376130149 cites W3140854437 @default.
- W4376130149 cites W3153300794 @default.
- W4376130149 cites W3156908258 @default.
- W4376130149 cites W3172038011 @default.
- W4376130149 cites W3183369445 @default.
- W4376130149 cites W3194559478 @default.
- W4376130149 cites W3194985341 @default.
- W4376130149 cites W3197822946 @default.
- W4376130149 cites W3198955198 @default.
- W4376130149 cites W3205929368 @default.
- W4376130149 cites W3213888880 @default.
- W4376130149 cites W3214961275 @default.
- W4376130149 cites W4221088087 @default.
- W4376130149 cites W4221137803 @default.
- W4376130149 cites W4226169355 @default.
- W4376130149 cites W4226178925 @default.
- W4376130149 cites W4229332618 @default.
- W4376130149 cites W4284673243 @default.
- W4376130149 cites W4292541014 @default.
- W4376130149 cites W4293522016 @default.
- W4376130149 cites W4306746248 @default.
- W4376130149 doi "https://doi.org/10.1016/j.buildenv.2023.110388" @default.
- W4376130149 hasPublicationYear "2023" @default.
- W4376130149 type Work @default.
- W4376130149 citedByCount "2" @default.
- W4376130149 countsByYear W43761301492023 @default.
- W4376130149 crossrefType "journal-article" @default.
- W4376130149 hasAuthorship W4376130149A5014109600 @default.
- W4376130149 hasAuthorship W4376130149A5037880462 @default.
- W4376130149 hasAuthorship W4376130149A5051050175 @default.
- W4376130149 hasConcept C108583219 @default.
- W4376130149 hasConcept C111919701 @default.
- W4376130149 hasConcept C118505674 @default.
- W4376130149 hasConcept C119857082 @default.
- W4376130149 hasConcept C121332964 @default.
- W4376130149 hasConcept C124101348 @default.
- W4376130149 hasConcept C154945302 @default.
- W4376130149 hasConcept C41008148 @default.
- W4376130149 hasConcept C61797465 @default.
- W4376130149 hasConcept C62520636 @default.
- W4376130149 hasConcept C79403827 @default.
- W4376130149 hasConceptScore W4376130149C108583219 @default.
- W4376130149 hasConceptScore W4376130149C111919701 @default.
- W4376130149 hasConceptScore W4376130149C118505674 @default.
- W4376130149 hasConceptScore W4376130149C119857082 @default.
- W4376130149 hasConceptScore W4376130149C121332964 @default.
- W4376130149 hasConceptScore W4376130149C124101348 @default.
- W4376130149 hasConceptScore W4376130149C154945302 @default.
- W4376130149 hasConceptScore W4376130149C41008148 @default.
- W4376130149 hasConceptScore W4376130149C61797465 @default.
- W4376130149 hasConceptScore W4376130149C62520636 @default.
- W4376130149 hasConceptScore W4376130149C79403827 @default.
- W4376130149 hasFunder F4320321001 @default.
- W4376130149 hasLocation W43761301491 @default.
- W4376130149 hasOpenAccess W4376130149 @default.
- W4376130149 hasPrimaryLocation W43761301491 @default.