Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376131490> ?p ?o ?g. }
- W4376131490 endingPage "e0282924" @default.
- W4376131490 startingPage "e0282924" @default.
- W4376131490 abstract "Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen. On account of the pattern-recognition capabilities of the underlying methods, the statistical power of the ensuing models is potentially considerable-appropriate for the handling even of vast, heterogeneous datasets. However, such potency comes at a price: this manifesting as the general practical deficits observed with respect to the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly, these elements have served to hinder broader uptake (most notably within a regulatory setting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxicological QSAR have previously been highlighted, accompanied by the forwarding of suggestions for best practice aimed at mitigation of their influence. However, the scope of such exercises has remained limited to classical QSAR-that conducted through use of linear regression and related techniques, with the adoption of comparatively few features or descriptors. Accordingly, the intention of this study has been to extend the remit of best practice guidance, so as to address concerns specific to employment of machine learning within the field. In doing so, the impact of strategies aimed at enhancing the transparency (feature importance, feature reduction), generalisability (cross-validation) and predictive power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through six common learning approaches, is evaluated." @default.
- W4376131490 created "2023-05-12" @default.
- W4376131490 creator A5005277925 @default.
- W4376131490 creator A5035541912 @default.
- W4376131490 creator A5054905346 @default.
- W4376131490 creator A5084970371 @default.
- W4376131490 date "2023-05-10" @default.
- W4376131490 modified "2023-09-27" @default.
- W4376131490 title "Guidance for good practice in the application of machine learning in development of toxicological quantitative structure-activity relationships (QSARs)" @default.
- W4376131490 cites W1968350258 @default.
- W4376131490 cites W1972156862 @default.
- W4376131490 cites W1975147762 @default.
- W4376131490 cites W1983691152 @default.
- W4376131490 cites W1996327711 @default.
- W4376131490 cites W1998025025 @default.
- W4376131490 cites W1999798000 @default.
- W4376131490 cites W2002503643 @default.
- W4376131490 cites W2010524461 @default.
- W4376131490 cites W2013336767 @default.
- W4376131490 cites W2033757486 @default.
- W4376131490 cites W2054716083 @default.
- W4376131490 cites W2055776987 @default.
- W4376131490 cites W2056387884 @default.
- W4376131490 cites W2058921796 @default.
- W4376131490 cites W2064748397 @default.
- W4376131490 cites W2077515916 @default.
- W4376131490 cites W2088536322 @default.
- W4376131490 cites W2097745317 @default.
- W4376131490 cites W2102636708 @default.
- W4376131490 cites W2110118110 @default.
- W4376131490 cites W2138525748 @default.
- W4376131490 cites W2152452453 @default.
- W4376131490 cites W2159887157 @default.
- W4376131490 cites W2169678694 @default.
- W4376131490 cites W2170644559 @default.
- W4376131490 cites W2213612645 @default.
- W4376131490 cites W2323599384 @default.
- W4376131490 cites W2513671774 @default.
- W4376131490 cites W2522602083 @default.
- W4376131490 cites W2541170635 @default.
- W4376131490 cites W2556851635 @default.
- W4376131490 cites W2586160710 @default.
- W4376131490 cites W2788572835 @default.
- W4376131490 cites W2800341923 @default.
- W4376131490 cites W2801991413 @default.
- W4376131490 cites W2899385878 @default.
- W4376131490 cites W2911964244 @default.
- W4376131490 cites W2922073769 @default.
- W4376131490 cites W2942368446 @default.
- W4376131490 cites W2962902143 @default.
- W4376131490 cites W2964303497 @default.
- W4376131490 cites W2970196665 @default.
- W4376131490 cites W2981111316 @default.
- W4376131490 cites W2996061341 @default.
- W4376131490 cites W2997681568 @default.
- W4376131490 cites W2999543430 @default.
- W4376131490 cites W2999615587 @default.
- W4376131490 cites W3011803624 @default.
- W4376131490 cites W3013954280 @default.
- W4376131490 cites W3014780529 @default.
- W4376131490 cites W3028902405 @default.
- W4376131490 cites W3095703932 @default.
- W4376131490 cites W3098996042 @default.
- W4376131490 cites W3112198773 @default.
- W4376131490 cites W3124318980 @default.
- W4376131490 cites W3124861950 @default.
- W4376131490 cites W3133900975 @default.
- W4376131490 cites W3138114698 @default.
- W4376131490 cites W3161819977 @default.
- W4376131490 cites W3197433610 @default.
- W4376131490 cites W3198294617 @default.
- W4376131490 cites W3206048862 @default.
- W4376131490 cites W4220803452 @default.
- W4376131490 cites W4224076411 @default.
- W4376131490 cites W4239510810 @default.
- W4376131490 cites W4286111163 @default.
- W4376131490 cites W4310222678 @default.
- W4376131490 doi "https://doi.org/10.1371/journal.pone.0282924" @default.
- W4376131490 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37163504" @default.
- W4376131490 hasPublicationYear "2023" @default.
- W4376131490 type Work @default.
- W4376131490 citedByCount "1" @default.
- W4376131490 countsByYear W43761314902023 @default.
- W4376131490 crossrefType "journal-article" @default.
- W4376131490 hasAuthorship W4376131490A5005277925 @default.
- W4376131490 hasAuthorship W4376131490A5035541912 @default.
- W4376131490 hasAuthorship W4376131490A5054905346 @default.
- W4376131490 hasAuthorship W4376131490A5084970371 @default.
- W4376131490 hasBestOaLocation W43761314901 @default.
- W4376131490 hasConcept C104317684 @default.
- W4376131490 hasConcept C107908354 @default.
- W4376131490 hasConcept C112930515 @default.
- W4376131490 hasConcept C119857082 @default.
- W4376131490 hasConcept C154945302 @default.
- W4376131490 hasConcept C164126121 @default.
- W4376131490 hasConcept C199360897 @default.
- W4376131490 hasConcept C2522767166 @default.
- W4376131490 hasConcept C2775905019 @default.