Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376132482> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4376132482 endingPage "e0284965" @default.
- W4376132482 startingPage "e0284965" @default.
- W4376132482 abstract "Classifying free-text from historical databases into research-compatible formats is a barrier for clinicians undertaking audit and research projects. The aim of this study was to (a) develop interactive active machine-learning model training methodology using readily available software that was (b) easily adaptable to a wide range of natural language databases and allowed customised researcher-defined categories, and then (c) evaluate the accuracy and speed of this model for classifying free text from two unique and unrelated clinical notes into coded data. A user interface for medical experts to train and evaluate the algorithm was created. Data requiring coding in the form of two independent databases of free-text clinical notes, each of unique natural language structure. Medical experts defined categories relevant to research projects and performed 'label-train-evaluate' loops on the training data set. A separate dataset was used for validation, with the medical experts blinded to the label given by the algorithm. The first dataset was 32,034 death certificate records from Northern Territory Births Deaths and Marriages, which were coded into 3 categories: haemorrhagic stroke, ischaemic stroke or no stroke. The second dataset was 12,039 recorded episodes of aeromedical retrieval from two prehospital and retrieval services in Northern Territory, Australia, which were coded into 5 categories: medical, surgical, trauma, obstetric or psychiatric. For the first dataset, macro-accuracy of the algorithm was 94.7%. For the second dataset, macro-accuracy was 92.4%. The time taken to develop and train the algorithm was 124 minutes for the death certificate coding, and 144 minutes for the aeromedical retrieval coding. This machine-learning training method was able to classify free-text clinical notes quickly and accurately from two different health datasets into categories of relevance to clinicians undertaking health service research." @default.
- W4376132482 created "2023-05-12" @default.
- W4376132482 creator A5014606195 @default.
- W4376132482 creator A5043049106 @default.
- W4376132482 creator A5065909168 @default.
- W4376132482 creator A5067646993 @default.
- W4376132482 date "2023-05-10" @default.
- W4376132482 modified "2023-10-14" @default.
- W4376132482 title "A method for rapid machine learning development for data mining with doctor-in-the-loop" @default.
- W4376132482 cites W1663984431 @default.
- W4376132482 cites W2300445845 @default.
- W4376132482 cites W2335994327 @default.
- W4376132482 cites W2772121968 @default.
- W4376132482 cites W2789326915 @default.
- W4376132482 cites W2909322947 @default.
- W4376132482 cites W2977942577 @default.
- W4376132482 cites W3013605954 @default.
- W4376132482 cites W3018601113 @default.
- W4376132482 cites W3083090950 @default.
- W4376132482 cites W3135028703 @default.
- W4376132482 cites W4210450386 @default.
- W4376132482 doi "https://doi.org/10.1371/journal.pone.0284965" @default.
- W4376132482 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37163511" @default.
- W4376132482 hasPublicationYear "2023" @default.
- W4376132482 type Work @default.
- W4376132482 citedByCount "0" @default.
- W4376132482 crossrefType "journal-article" @default.
- W4376132482 hasAuthorship W4376132482A5014606195 @default.
- W4376132482 hasAuthorship W4376132482A5043049106 @default.
- W4376132482 hasAuthorship W4376132482A5065909168 @default.
- W4376132482 hasAuthorship W4376132482A5067646993 @default.
- W4376132482 hasBestOaLocation W43761324821 @default.
- W4376132482 hasConcept C105795698 @default.
- W4376132482 hasConcept C11413529 @default.
- W4376132482 hasConcept C119857082 @default.
- W4376132482 hasConcept C124101348 @default.
- W4376132482 hasConcept C142724271 @default.
- W4376132482 hasConcept C154945302 @default.
- W4376132482 hasConcept C162324750 @default.
- W4376132482 hasConcept C179518139 @default.
- W4376132482 hasConcept C187736073 @default.
- W4376132482 hasConcept C199521495 @default.
- W4376132482 hasConcept C23123220 @default.
- W4376132482 hasConcept C33923547 @default.
- W4376132482 hasConcept C41008148 @default.
- W4376132482 hasConcept C534262118 @default.
- W4376132482 hasConcept C71924100 @default.
- W4376132482 hasConcept C96865113 @default.
- W4376132482 hasConceptScore W4376132482C105795698 @default.
- W4376132482 hasConceptScore W4376132482C11413529 @default.
- W4376132482 hasConceptScore W4376132482C119857082 @default.
- W4376132482 hasConceptScore W4376132482C124101348 @default.
- W4376132482 hasConceptScore W4376132482C142724271 @default.
- W4376132482 hasConceptScore W4376132482C154945302 @default.
- W4376132482 hasConceptScore W4376132482C162324750 @default.
- W4376132482 hasConceptScore W4376132482C179518139 @default.
- W4376132482 hasConceptScore W4376132482C187736073 @default.
- W4376132482 hasConceptScore W4376132482C199521495 @default.
- W4376132482 hasConceptScore W4376132482C23123220 @default.
- W4376132482 hasConceptScore W4376132482C33923547 @default.
- W4376132482 hasConceptScore W4376132482C41008148 @default.
- W4376132482 hasConceptScore W4376132482C534262118 @default.
- W4376132482 hasConceptScore W4376132482C71924100 @default.
- W4376132482 hasConceptScore W4376132482C96865113 @default.
- W4376132482 hasIssue "5" @default.
- W4376132482 hasLocation W43761324821 @default.
- W4376132482 hasLocation W43761324822 @default.
- W4376132482 hasOpenAccess W4376132482 @default.
- W4376132482 hasPrimaryLocation W43761324821 @default.
- W4376132482 hasRelatedWork W1965098310 @default.
- W4376132482 hasRelatedWork W2006964749 @default.
- W4376132482 hasRelatedWork W2384888906 @default.
- W4376132482 hasRelatedWork W2748952813 @default.
- W4376132482 hasRelatedWork W2899084033 @default.
- W4376132482 hasRelatedWork W2961085424 @default.
- W4376132482 hasRelatedWork W2981850339 @default.
- W4376132482 hasRelatedWork W4306674287 @default.
- W4376132482 hasRelatedWork W4309637067 @default.
- W4376132482 hasRelatedWork W4316082230 @default.
- W4376132482 hasVolume "18" @default.
- W4376132482 isParatext "false" @default.
- W4376132482 isRetracted "false" @default.
- W4376132482 workType "article" @default.