Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376133072> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4376133072 endingPage "2785" @default.
- W4376133072 startingPage "2775" @default.
- W4376133072 abstract "Abstract Purpose To develop an artificial intelligence (AI) model for estimating best-corrected visual acuity (BCVA) using horizontal and vertical optical coherence tomography (OCT) scans of various retinal diseases and examine factors associated with its accuracy. Methods OCT images and associated BCVA measurements from 2,700 OCT images (accrued from 2004 to 2018 with an Atlantis, Triton; Topcon, Tokyo, Japan) of 756 eyes of 469 patients and their BCVA were retrospectively analysed. For each eye, one horizontal and one vertical OCT scan in cross-line mode were used. The GoogLeNet architecture was implemented. The coefficient of determination (R 2 ), root mean square error (RMSE) and mean absolute error (MAE) were computed to evaluate the performance of the trained network. Results R 2 , RMSE, and MAE were 0.512, 0.350, and 0.321, respectively. R 2 was higher in phakic eyes than in pseudophakic eyes. Multivariable regression analysis showed that a higher R 2 was significantly associated with better BCVA ( p < 0.001) and a higher standard deviation of BCVA ( p < 0.001). However, the performance was worse in an external validation, with R 2 of 0.19. R 2 values for retinal vein occlusion and age-related macular degeneration were 0.961 and 0.373 in the internal validation but 0.20 and 0.22 in the external validation. Conclusion Although underspecification appears to be a fundamental problem to be addressed in AI models for predicting visual acuity, the present results suggest that AI models might have potential for estimating BCVA from OCT in AMD and RVO. Further research is needed to improve the utility of BCVA estimation for these diseases." @default.
- W4376133072 created "2023-05-12" @default.
- W4376133072 creator A5032313766 @default.
- W4376133072 creator A5050463790 @default.
- W4376133072 creator A5061017746 @default.
- W4376133072 creator A5067696066 @default.
- W4376133072 creator A5071637704 @default.
- W4376133072 creator A5080762568 @default.
- W4376133072 creator A5083195655 @default.
- W4376133072 date "2023-05-11" @default.
- W4376133072 modified "2023-10-04" @default.
- W4376133072 title "An AI model to estimate visual acuity based solely on cross-sectional OCT imaging of various diseases" @default.
- W4376133072 cites W1485476462 @default.
- W4376133072 cites W1965083039 @default.
- W4376133072 cites W1981111037 @default.
- W4376133072 cites W2006300976 @default.
- W4376133072 cites W2019947342 @default.
- W4376133072 cites W2062160894 @default.
- W4376133072 cites W2092103332 @default.
- W4376133072 cites W2156595418 @default.
- W4376133072 cites W2172569937 @default.
- W4376133072 cites W2621101817 @default.
- W4376133072 cites W2766696009 @default.
- W4376133072 cites W2767404384 @default.
- W4376133072 cites W2768217608 @default.
- W4376133072 cites W2772059204 @default.
- W4376133072 cites W2784217673 @default.
- W4376133072 cites W2896979444 @default.
- W4376133072 cites W2898709265 @default.
- W4376133072 cites W2917124146 @default.
- W4376133072 cites W2944081508 @default.
- W4376133072 cites W2947805333 @default.
- W4376133072 cites W3084069549 @default.
- W4376133072 cites W3126399635 @default.
- W4376133072 cites W4221120317 @default.
- W4376133072 cites W4296025296 @default.
- W4376133072 cites W4300435436 @default.
- W4376133072 cites W4302303887 @default.
- W4376133072 cites W4307285432 @default.
- W4376133072 doi "https://doi.org/10.1007/s00417-023-06054-9" @default.
- W4376133072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37166519" @default.
- W4376133072 hasPublicationYear "2023" @default.
- W4376133072 type Work @default.
- W4376133072 citedByCount "2" @default.
- W4376133072 countsByYear W43761330722023 @default.
- W4376133072 crossrefType "journal-article" @default.
- W4376133072 hasAuthorship W4376133072A5032313766 @default.
- W4376133072 hasAuthorship W4376133072A5050463790 @default.
- W4376133072 hasAuthorship W4376133072A5061017746 @default.
- W4376133072 hasAuthorship W4376133072A5067696066 @default.
- W4376133072 hasAuthorship W4376133072A5071637704 @default.
- W4376133072 hasAuthorship W4376133072A5080762568 @default.
- W4376133072 hasAuthorship W4376133072A5083195655 @default.
- W4376133072 hasBestOaLocation W43761330721 @default.
- W4376133072 hasConcept C105795698 @default.
- W4376133072 hasConcept C118487528 @default.
- W4376133072 hasConcept C119767625 @default.
- W4376133072 hasConcept C139945424 @default.
- W4376133072 hasConcept C188154048 @default.
- W4376133072 hasConcept C22679943 @default.
- W4376133072 hasConcept C2778257484 @default.
- W4376133072 hasConcept C2778818243 @default.
- W4376133072 hasConcept C2780261187 @default.
- W4376133072 hasConcept C2780347916 @default.
- W4376133072 hasConcept C33923547 @default.
- W4376133072 hasConcept C71924100 @default.
- W4376133072 hasConceptScore W4376133072C105795698 @default.
- W4376133072 hasConceptScore W4376133072C118487528 @default.
- W4376133072 hasConceptScore W4376133072C119767625 @default.
- W4376133072 hasConceptScore W4376133072C139945424 @default.
- W4376133072 hasConceptScore W4376133072C188154048 @default.
- W4376133072 hasConceptScore W4376133072C22679943 @default.
- W4376133072 hasConceptScore W4376133072C2778257484 @default.
- W4376133072 hasConceptScore W4376133072C2778818243 @default.
- W4376133072 hasConceptScore W4376133072C2780261187 @default.
- W4376133072 hasConceptScore W4376133072C2780347916 @default.
- W4376133072 hasConceptScore W4376133072C33923547 @default.
- W4376133072 hasConceptScore W4376133072C71924100 @default.
- W4376133072 hasIssue "10" @default.
- W4376133072 hasLocation W43761330721 @default.
- W4376133072 hasLocation W43761330722 @default.
- W4376133072 hasOpenAccess W4376133072 @default.
- W4376133072 hasPrimaryLocation W43761330721 @default.
- W4376133072 hasRelatedWork W1574902248 @default.
- W4376133072 hasRelatedWork W1987339308 @default.
- W4376133072 hasRelatedWork W2089952742 @default.
- W4376133072 hasRelatedWork W2093120518 @default.
- W4376133072 hasRelatedWork W2132184622 @default.
- W4376133072 hasRelatedWork W2150844280 @default.
- W4376133072 hasRelatedWork W2734710580 @default.
- W4376133072 hasRelatedWork W3029290848 @default.
- W4376133072 hasRelatedWork W3199964988 @default.
- W4376133072 hasRelatedWork W1543935659 @default.
- W4376133072 hasVolume "261" @default.
- W4376133072 isParatext "false" @default.
- W4376133072 isRetracted "false" @default.
- W4376133072 workType "article" @default.