Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376133364> ?p ?o ?g. }
- W4376133364 endingPage "3694" @default.
- W4376133364 startingPage "3686" @default.
- W4376133364 abstract "Identifying drug-disease associations (DDAs) is critical to the development of drugs. Traditional methods to determine DDAs are expensive and inefficient. Therefore, it is imperative to develop more accurate and effective methods for DDAs prediction. Most current DDAs prediction methods utilize original DDAs matrix directly. However, the original DDAs matrix is sparse, which greatly affects the prediction consequences. Hence, a prediction method based on multi-similarities graph convolutional autoencoder (MSGCA) is proposed for DDAs prediction. First, MSGCA integrates multiple drug similarities and disease similarities using centered kernel alignment-based multiple kernel learning (CKA-MKL) algorithm to form new drug similarity and disease similarity, respectively. Second, the new drug and disease similarities are improved by linear neighborhood, and the DDAs matrix is reconstructed by weighted K nearest neighbor profiles. Next, the reconstructed DDAs and the improved drug and disease similarities are integrated into a heterogeneous network. Finally, the graph convolutional autoencoder with attention mechanism is utilized to predict DDAs. Compared with extant methods, MSGCA shows superior results on three datasets. Furthermore, case studies further demonstrate the reliability of MSGCA." @default.
- W4376133364 created "2023-05-12" @default.
- W4376133364 creator A5026569643 @default.
- W4376133364 creator A5056141272 @default.
- W4376133364 creator A5073144090 @default.
- W4376133364 creator A5085348999 @default.
- W4376133364 creator A5090363402 @default.
- W4376133364 date "2023-07-01" @default.
- W4376133364 modified "2023-10-16" @default.
- W4376133364 title "MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder" @default.
- W4376133364 cites W2068336157 @default.
- W4376133364 cites W2105939331 @default.
- W4376133364 cites W2113072832 @default.
- W4376133364 cites W2128049108 @default.
- W4376133364 cites W2148797284 @default.
- W4376133364 cites W2154654747 @default.
- W4376133364 cites W2166550586 @default.
- W4376133364 cites W2346950316 @default.
- W4376133364 cites W2579434750 @default.
- W4376133364 cites W2767891136 @default.
- W4376133364 cites W2770663710 @default.
- W4376133364 cites W2771545712 @default.
- W4376133364 cites W2790385355 @default.
- W4376133364 cites W2896605526 @default.
- W4376133364 cites W2904742480 @default.
- W4376133364 cites W2946099214 @default.
- W4376133364 cites W2950473735 @default.
- W4376133364 cites W2961050676 @default.
- W4376133364 cites W2965717703 @default.
- W4376133364 cites W2966349991 @default.
- W4376133364 cites W3000082418 @default.
- W4376133364 cites W3000600836 @default.
- W4376133364 cites W3003038853 @default.
- W4376133364 cites W3004260451 @default.
- W4376133364 cites W3022121690 @default.
- W4376133364 cites W3027579288 @default.
- W4376133364 cites W3042289107 @default.
- W4376133364 cites W3093030756 @default.
- W4376133364 cites W3093194543 @default.
- W4376133364 cites W3097857367 @default.
- W4376133364 cites W3113654230 @default.
- W4376133364 cites W3116278528 @default.
- W4376133364 cites W3125008742 @default.
- W4376133364 cites W3174290590 @default.
- W4376133364 cites W3179782236 @default.
- W4376133364 cites W3192134500 @default.
- W4376133364 cites W3193511962 @default.
- W4376133364 cites W3195262567 @default.
- W4376133364 cites W3199401237 @default.
- W4376133364 cites W3201862100 @default.
- W4376133364 cites W3211042394 @default.
- W4376133364 cites W3214305858 @default.
- W4376133364 cites W4200043717 @default.
- W4376133364 cites W4200140951 @default.
- W4376133364 cites W4200424115 @default.
- W4376133364 cites W4206547282 @default.
- W4376133364 cites W4220904934 @default.
- W4376133364 cites W4226276166 @default.
- W4376133364 cites W4248234957 @default.
- W4376133364 cites W4281685099 @default.
- W4376133364 cites W4292263641 @default.
- W4376133364 cites W4294990936 @default.
- W4376133364 doi "https://doi.org/10.1109/jbhi.2023.3272154" @default.
- W4376133364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37163398" @default.
- W4376133364 hasPublicationYear "2023" @default.
- W4376133364 type Work @default.
- W4376133364 citedByCount "0" @default.
- W4376133364 crossrefType "journal-article" @default.
- W4376133364 hasAuthorship W4376133364A5026569643 @default.
- W4376133364 hasAuthorship W4376133364A5056141272 @default.
- W4376133364 hasAuthorship W4376133364A5073144090 @default.
- W4376133364 hasAuthorship W4376133364A5085348999 @default.
- W4376133364 hasAuthorship W4376133364A5090363402 @default.
- W4376133364 hasConcept C101738243 @default.
- W4376133364 hasConcept C108583219 @default.
- W4376133364 hasConcept C114614502 @default.
- W4376133364 hasConcept C119857082 @default.
- W4376133364 hasConcept C132525143 @default.
- W4376133364 hasConcept C154945302 @default.
- W4376133364 hasConcept C33923547 @default.
- W4376133364 hasConcept C41008148 @default.
- W4376133364 hasConcept C74193536 @default.
- W4376133364 hasConcept C80444323 @default.
- W4376133364 hasConceptScore W4376133364C101738243 @default.
- W4376133364 hasConceptScore W4376133364C108583219 @default.
- W4376133364 hasConceptScore W4376133364C114614502 @default.
- W4376133364 hasConceptScore W4376133364C119857082 @default.
- W4376133364 hasConceptScore W4376133364C132525143 @default.
- W4376133364 hasConceptScore W4376133364C154945302 @default.
- W4376133364 hasConceptScore W4376133364C33923547 @default.
- W4376133364 hasConceptScore W4376133364C41008148 @default.
- W4376133364 hasConceptScore W4376133364C74193536 @default.
- W4376133364 hasConceptScore W4376133364C80444323 @default.
- W4376133364 hasFunder F4320321001 @default.
- W4376133364 hasIssue "7" @default.
- W4376133364 hasLocation W43761333641 @default.
- W4376133364 hasLocation W43761333642 @default.
- W4376133364 hasOpenAccess W4376133364 @default.