Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376148934> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4376148934 endingPage "747" @default.
- W4376148934 startingPage "675" @default.
- W4376148934 abstract "A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone. Cones that are homogeneous and self-dual are called symmetric. Conic optimization problems over symmetric cones have been extensively studied, particularly in the literature on interior-point algorithms, and as the foundation of modelling tools for convex optimization. In this paper we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. Chordal sparsity guarantees that positive define matrices in the cone have zero-fill Cholesky factorizations. The stronger properties that make the cone homogeneous guarantee that the inverse Cholesky factors have the same zero-fill pattern. We describe transitive subsets of the cone automorphism groups, and important properties of the composition of log-det barriers with the automorphisms. Next, we consider extensions to linear slices of the positive semidefinite cone, and review conditions that make such cones homogeneous. An important example is the matrix norm cone, the epigraph of a quadratic-over-linear matrix function. The properties of homogeneous sparse matrix cones are shown to extend to this more general class of homogeneous matrix cones. We then give an overview of the algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous structure in primal–dual symmetric interior-point methods, contrasting this with the well-developed algorithms for symmetric cones that exploit the strong properties of self-scaled barriers, and with symmetric primal–dual methods for general convex cones." @default.
- W4376148934 created "2023-05-12" @default.
- W4376148934 creator A5017990990 @default.
- W4376148934 creator A5062941227 @default.
- W4376148934 date "2023-05-01" @default.
- W4376148934 modified "2023-10-14" @default.
- W4376148934 title "Linear optimization over homogeneous matrix cones" @default.
- W4376148934 doi "https://doi.org/10.1017/s0962492922000113" @default.
- W4376148934 hasPublicationYear "2023" @default.
- W4376148934 type Work @default.
- W4376148934 citedByCount "0" @default.
- W4376148934 crossrefType "journal-article" @default.
- W4376148934 hasAuthorship W4376148934A5017990990 @default.
- W4376148934 hasAuthorship W4376148934A5062941227 @default.
- W4376148934 hasBestOaLocation W43761489341 @default.
- W4376148934 hasConcept C106487976 @default.
- W4376148934 hasConcept C111397411 @default.
- W4376148934 hasConcept C112680207 @default.
- W4376148934 hasConcept C11413529 @default.
- W4376148934 hasConcept C114614502 @default.
- W4376148934 hasConcept C12108790 @default.
- W4376148934 hasConcept C121332964 @default.
- W4376148934 hasConcept C157972887 @default.
- W4376148934 hasConcept C158693339 @default.
- W4376148934 hasConcept C159985019 @default.
- W4376148934 hasConcept C192562407 @default.
- W4376148934 hasConcept C24484764 @default.
- W4376148934 hasConcept C2524010 @default.
- W4376148934 hasConcept C28340159 @default.
- W4376148934 hasConcept C30014739 @default.
- W4376148934 hasConcept C33923547 @default.
- W4376148934 hasConcept C34727166 @default.
- W4376148934 hasConcept C62520636 @default.
- W4376148934 hasConcept C66882249 @default.
- W4376148934 hasConcept C79187972 @default.
- W4376148934 hasConcept C94906876 @default.
- W4376148934 hasConceptScore W4376148934C106487976 @default.
- W4376148934 hasConceptScore W4376148934C111397411 @default.
- W4376148934 hasConceptScore W4376148934C112680207 @default.
- W4376148934 hasConceptScore W4376148934C11413529 @default.
- W4376148934 hasConceptScore W4376148934C114614502 @default.
- W4376148934 hasConceptScore W4376148934C12108790 @default.
- W4376148934 hasConceptScore W4376148934C121332964 @default.
- W4376148934 hasConceptScore W4376148934C157972887 @default.
- W4376148934 hasConceptScore W4376148934C158693339 @default.
- W4376148934 hasConceptScore W4376148934C159985019 @default.
- W4376148934 hasConceptScore W4376148934C192562407 @default.
- W4376148934 hasConceptScore W4376148934C24484764 @default.
- W4376148934 hasConceptScore W4376148934C2524010 @default.
- W4376148934 hasConceptScore W4376148934C28340159 @default.
- W4376148934 hasConceptScore W4376148934C30014739 @default.
- W4376148934 hasConceptScore W4376148934C33923547 @default.
- W4376148934 hasConceptScore W4376148934C34727166 @default.
- W4376148934 hasConceptScore W4376148934C62520636 @default.
- W4376148934 hasConceptScore W4376148934C66882249 @default.
- W4376148934 hasConceptScore W4376148934C79187972 @default.
- W4376148934 hasConceptScore W4376148934C94906876 @default.
- W4376148934 hasLocation W43761489341 @default.
- W4376148934 hasLocation W43761489342 @default.
- W4376148934 hasOpenAccess W4376148934 @default.
- W4376148934 hasPrimaryLocation W43761489341 @default.
- W4376148934 hasRelatedWork W1965358437 @default.
- W4376148934 hasRelatedWork W1968919187 @default.
- W4376148934 hasRelatedWork W1974329054 @default.
- W4376148934 hasRelatedWork W2161252274 @default.
- W4376148934 hasRelatedWork W2525685476 @default.
- W4376148934 hasRelatedWork W2952895455 @default.
- W4376148934 hasRelatedWork W3045946120 @default.
- W4376148934 hasRelatedWork W4307927247 @default.
- W4376148934 hasRelatedWork W4376148934 @default.
- W4376148934 hasRelatedWork W4378498771 @default.
- W4376148934 hasVolume "32" @default.
- W4376148934 isParatext "false" @default.
- W4376148934 isRetracted "false" @default.
- W4376148934 workType "article" @default.