Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376149448> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4376149448 abstract "More and more individuals are paying attention to the research on the emotional information found in micro-blog comments. TEXTCNN is growing rapidly in the short text space. However, because the training model of TEXTCNN model itself is not very extensible and interpretable, it is difficult to quantify and evaluate the relative importance of features and themselves. At the same time, word embedding can't solve the problem of polysemy at one time. This research suggests a microblog sentiment analysis method based on TEXTCNN and Bayes that addresses this flaw. First, the word embedding vector is obtained by word2vec tool, and based on the word vector, the ELMo word vector integrating contextual features and different semantic features is generated by ELMo model. Second, the local features of ELMo word vector are extracted from multiple angles by using the convolution layer and pooling layer of TEXTCNN model. Finally, the training task of emotion data classification is completed by combining Bayes classifier. On the Stanford Sentiment Classification Corpus data set SST (Stanford Sentiment Classification Corpus Data bank), the experimental findings demonstrate that the model in this paper is compared with TEXTCNN, LSTM, and LSTM–TEXTCNN models. The Accuracy, Precision, Recall, and F1-score of the experimental results of this research have all greatly increased. Their values are respectively 0.9813, 0.9821, 0.9804 and 0.9812, which are superior to other comparison models and can be effectively used for emotional accurate analysis and identification of events in microblog emotion analysis." @default.
- W4376149448 created "2023-05-12" @default.
- W4376149448 creator A5004345759 @default.
- W4376149448 creator A5018915200 @default.
- W4376149448 creator A5022745561 @default.
- W4376149448 creator A5024330252 @default.
- W4376149448 date "2023-05-01" @default.
- W4376149448 modified "2023-09-27" @default.
- W4376149448 title "A combination of TEXTCNN model and Bayesian classifier for microblog sentiment analysis" @default.
- W4376149448 cites W1832693441 @default.
- W4376149448 cites W2120615054 @default.
- W4376149448 cites W2168505588 @default.
- W4376149448 cites W2306941105 @default.
- W4376149448 cites W2749564305 @default.
- W4376149448 cites W3003618396 @default.
- W4376149448 cites W3030218575 @default.
- W4376149448 cites W3097472721 @default.
- W4376149448 cites W3107770647 @default.
- W4376149448 cites W3113054364 @default.
- W4376149448 cites W3116936501 @default.
- W4376149448 cites W3136733228 @default.
- W4376149448 cites W3172247901 @default.
- W4376149448 cites W3205939075 @default.
- W4376149448 cites W3216092102 @default.
- W4376149448 cites W4200443187 @default.
- W4376149448 cites W4205526478 @default.
- W4376149448 cites W4205721122 @default.
- W4376149448 cites W4220760439 @default.
- W4376149448 cites W4223492152 @default.
- W4376149448 cites W4226172832 @default.
- W4376149448 cites W4307136677 @default.
- W4376149448 doi "https://doi.org/10.1007/s10878-023-01038-1" @default.
- W4376149448 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37200571" @default.
- W4376149448 hasPublicationYear "2023" @default.
- W4376149448 type Work @default.
- W4376149448 citedByCount "0" @default.
- W4376149448 crossrefType "journal-article" @default.
- W4376149448 hasAuthorship W4376149448A5004345759 @default.
- W4376149448 hasAuthorship W4376149448A5018915200 @default.
- W4376149448 hasAuthorship W4376149448A5022745561 @default.
- W4376149448 hasAuthorship W4376149448A5024330252 @default.
- W4376149448 hasBestOaLocation W43761494481 @default.
- W4376149448 hasConcept C119857082 @default.
- W4376149448 hasConcept C12267149 @default.
- W4376149448 hasConcept C136764020 @default.
- W4376149448 hasConcept C143275388 @default.
- W4376149448 hasConcept C154945302 @default.
- W4376149448 hasConcept C204321447 @default.
- W4376149448 hasConcept C2524010 @default.
- W4376149448 hasConcept C2776461190 @default.
- W4376149448 hasConcept C2777462759 @default.
- W4376149448 hasConcept C2780276568 @default.
- W4376149448 hasConcept C33923547 @default.
- W4376149448 hasConcept C41008148 @default.
- W4376149448 hasConcept C41608201 @default.
- W4376149448 hasConcept C518677369 @default.
- W4376149448 hasConcept C52001869 @default.
- W4376149448 hasConcept C66402592 @default.
- W4376149448 hasConcept C70437156 @default.
- W4376149448 hasConcept C90805587 @default.
- W4376149448 hasConcept C95623464 @default.
- W4376149448 hasConceptScore W4376149448C119857082 @default.
- W4376149448 hasConceptScore W4376149448C12267149 @default.
- W4376149448 hasConceptScore W4376149448C136764020 @default.
- W4376149448 hasConceptScore W4376149448C143275388 @default.
- W4376149448 hasConceptScore W4376149448C154945302 @default.
- W4376149448 hasConceptScore W4376149448C204321447 @default.
- W4376149448 hasConceptScore W4376149448C2524010 @default.
- W4376149448 hasConceptScore W4376149448C2776461190 @default.
- W4376149448 hasConceptScore W4376149448C2777462759 @default.
- W4376149448 hasConceptScore W4376149448C2780276568 @default.
- W4376149448 hasConceptScore W4376149448C33923547 @default.
- W4376149448 hasConceptScore W4376149448C41008148 @default.
- W4376149448 hasConceptScore W4376149448C41608201 @default.
- W4376149448 hasConceptScore W4376149448C518677369 @default.
- W4376149448 hasConceptScore W4376149448C52001869 @default.
- W4376149448 hasConceptScore W4376149448C66402592 @default.
- W4376149448 hasConceptScore W4376149448C70437156 @default.
- W4376149448 hasConceptScore W4376149448C90805587 @default.
- W4376149448 hasConceptScore W4376149448C95623464 @default.
- W4376149448 hasIssue "4" @default.
- W4376149448 hasLocation W43761494481 @default.
- W4376149448 hasLocation W43761494482 @default.
- W4376149448 hasLocation W43761494483 @default.
- W4376149448 hasOpenAccess W4376149448 @default.
- W4376149448 hasPrimaryLocation W43761494481 @default.
- W4376149448 hasRelatedWork W2335882425 @default.
- W4376149448 hasRelatedWork W2371493937 @default.
- W4376149448 hasRelatedWork W2608581744 @default.
- W4376149448 hasRelatedWork W2623325211 @default.
- W4376149448 hasRelatedWork W2752287943 @default.
- W4376149448 hasRelatedWork W3175769438 @default.
- W4376149448 hasRelatedWork W3212585586 @default.
- W4376149448 hasRelatedWork W4313384562 @default.
- W4376149448 hasRelatedWork W4379932966 @default.
- W4376149448 hasRelatedWork W4381827133 @default.
- W4376149448 hasVolume "45" @default.
- W4376149448 isParatext "false" @default.
- W4376149448 isRetracted "false" @default.
- W4376149448 workType "article" @default.