Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376171075> ?p ?o ?g. }
- W4376171075 endingPage "2054" @default.
- W4376171075 startingPage "2037" @default.
- W4376171075 abstract "Abstract. The heterogeneous chemistry of atmospheric aerosols involves multiphase chemical kinetics that can be described by kinetic multi-layer models (KMs) that explicitly resolve mass transport and chemical reactions. However, KMs are computationally too expensive to be used as sub-modules in large-scale atmospheric models, and the computational costs also limit their utility in inverse-modeling approaches commonly used to infer aerosol kinetic parameters from laboratory studies. In this study, we show how machine learning methods can generate inexpensive surrogate models for the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) to predict reaction times in multiphase chemical systems. We apply and compare two common and openly available methods for the generation of surrogate models, polynomial chaos expansion (PCE) with UQLab and neural networks (NNs) through the Python package Keras. We show that the PCE method is well suited to determining global sensitivity indices of the KMs, and we demonstrate how inverse-modeling applications can be enabled or accelerated with NN-suggested sampling. These qualities make them suitable supporting tools for laboratory work in the interpretation of data and the design of future experiments. Overall, the KM surrogate models investigated in this study are fast, accurate, and robust, which suggests their applicability as sub-modules in large-scale atmospheric models." @default.
- W4376171075 created "2023-05-12" @default.
- W4376171075 creator A5007210137 @default.
- W4376171075 creator A5029224014 @default.
- W4376171075 creator A5045968499 @default.
- W4376171075 creator A5047550036 @default.
- W4376171075 creator A5057359066 @default.
- W4376171075 creator A5066381253 @default.
- W4376171075 date "2023-04-14" @default.
- W4376171075 modified "2023-10-17" @default.
- W4376171075 title "Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks" @default.
- W4376171075 cites W100464641 @default.
- W4376171075 cites W1496009977 @default.
- W4376171075 cites W1965229818 @default.
- W4376171075 cites W1977177161 @default.
- W4376171075 cites W1985412770 @default.
- W4376171075 cites W2018159038 @default.
- W4376171075 cites W2024048568 @default.
- W4376171075 cites W2037516043 @default.
- W4376171075 cites W2042175812 @default.
- W4376171075 cites W2045355467 @default.
- W4376171075 cites W2045466646 @default.
- W4376171075 cites W2049774453 @default.
- W4376171075 cites W2075199607 @default.
- W4376171075 cites W2101589741 @default.
- W4376171075 cites W2106600817 @default.
- W4376171075 cites W2107743927 @default.
- W4376171075 cites W2108207895 @default.
- W4376171075 cites W2112081648 @default.
- W4376171075 cites W2112923815 @default.
- W4376171075 cites W2116629692 @default.
- W4376171075 cites W2120270786 @default.
- W4376171075 cites W2128586429 @default.
- W4376171075 cites W2137994304 @default.
- W4376171075 cites W2164562420 @default.
- W4376171075 cites W2180748755 @default.
- W4376171075 cites W2322823851 @default.
- W4376171075 cites W2338548332 @default.
- W4376171075 cites W2342249984 @default.
- W4376171075 cites W2460353870 @default.
- W4376171075 cites W2580140850 @default.
- W4376171075 cites W2601001006 @default.
- W4376171075 cites W2786232134 @default.
- W4376171075 cites W2883313607 @default.
- W4376171075 cites W2895144725 @default.
- W4376171075 cites W2919027323 @default.
- W4376171075 cites W2942137712 @default.
- W4376171075 cites W2974527409 @default.
- W4376171075 cites W2982705123 @default.
- W4376171075 cites W3003314233 @default.
- W4376171075 cites W3082953523 @default.
- W4376171075 cites W3090474448 @default.
- W4376171075 cites W3099878876 @default.
- W4376171075 cites W3105945687 @default.
- W4376171075 cites W3125327892 @default.
- W4376171075 cites W3136372534 @default.
- W4376171075 cites W3167771724 @default.
- W4376171075 cites W3190095573 @default.
- W4376171075 cites W3203139310 @default.
- W4376171075 cites W3207056905 @default.
- W4376171075 cites W3209257975 @default.
- W4376171075 cites W3214777956 @default.
- W4376171075 cites W4210270671 @default.
- W4376171075 cites W4225512320 @default.
- W4376171075 cites W4226443794 @default.
- W4376171075 cites W4226465768 @default.
- W4376171075 cites W4241621308 @default.
- W4376171075 cites W4248571398 @default.
- W4376171075 cites W4252342258 @default.
- W4376171075 cites W4280639185 @default.
- W4376171075 cites W4292213075 @default.
- W4376171075 cites W4312716706 @default.
- W4376171075 doi "https://doi.org/10.5194/gmd-16-2037-2023" @default.
- W4376171075 hasPublicationYear "2023" @default.
- W4376171075 type Work @default.
- W4376171075 citedByCount "3" @default.
- W4376171075 countsByYear W43761710752023 @default.
- W4376171075 crossrefType "journal-article" @default.
- W4376171075 hasAuthorship W4376171075A5007210137 @default.
- W4376171075 hasAuthorship W4376171075A5029224014 @default.
- W4376171075 hasAuthorship W4376171075A5045968499 @default.
- W4376171075 hasAuthorship W4376171075A5047550036 @default.
- W4376171075 hasAuthorship W4376171075A5057359066 @default.
- W4376171075 hasAuthorship W4376171075A5066381253 @default.
- W4376171075 hasBestOaLocation W43761710751 @default.
- W4376171075 hasConcept C105795698 @default.
- W4376171075 hasConcept C111919701 @default.
- W4376171075 hasConcept C11413529 @default.
- W4376171075 hasConcept C119857082 @default.
- W4376171075 hasConcept C131675550 @default.
- W4376171075 hasConcept C186060115 @default.
- W4376171075 hasConcept C19499675 @default.
- W4376171075 hasConcept C197656079 @default.
- W4376171075 hasConcept C207467116 @default.
- W4376171075 hasConcept C2524010 @default.
- W4376171075 hasConcept C32230216 @default.
- W4376171075 hasConcept C33923547 @default.
- W4376171075 hasConcept C41008148 @default.