Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376257027> ?p ?o ?g. }
- W4376257027 endingPage "155589" @default.
- W4376257027 startingPage "155589" @default.
- W4376257027 abstract "Evidence is accumulating that growth hormone (GH) protects against the development of steatosis and progression of non-alcoholic fatty liver disease (NAFLD). GH may control steatosis indirectly by altering systemic insulin sensitivity and substrate delivery to the liver and/or by the direct actions of GH on hepatocyte function.To better define the hepatocyte-specific role of GH receptor (GHR) signaling on regulating steatosis, we used a mouse model with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd). To prevent the reduction in circulating insulin-like growth factor 1 (IGF1) and the subsequent increase in GH observed after aHepGHRkd, subsets of aHepGHRkd mice were treated with adeno-associated viral vectors (AAV) driving hepatocyte-specific expression of IGF1 or a constitutively active form of STAT5b (STAT5bCA). The impact of hepatocyte-specific modulation of GHR, IGF1 and STAT5b on carbohydrate and lipid metabolism was studied across multiple nutritional states and in the context of hyperinsulinemic:euglycemic clamps.Chow-fed male aHepGHRkd mice developed steatosis associated with an increase in hepatic glucokinase (GCK) and ketohexokinase (KHK) expression and de novo lipogenesis (DNL) rate, in the post-absorptive state and in response to refeeding after an overnight fast. The aHepGHRkd-associated increase in hepatic KHK, but not GCK and steatosis, was dependent on hepatocyte expression of carbohydrate response element binding protein (ChREBP), in re-fed mice. Interestingly, under clamp conditions, aHepGHRkd also increased the rate of DNL and expression of GCK and KHK, but impaired insulin-mediated suppression of hepatic glucose production, without altering plasma NEFA levels. These effects were normalized with AAV-mediated hepatocyte expression of IGF1 or STAT5bCA. Comparison of the impact of AAV-mediated hepatocyte IGF1 versus STAT5bCA in aHepGHRkd mice across multiple nutritional states, indicated the restorative actions of IGF1 are indirect, by improving systemic insulin sensitivity, independent of changes in the liver transcriptome. In contrast, the actions of STAT5b are due to the combined effects of raising IGF1 and direct alterations in the hepatocyte gene program that may involve suppression of BCL6 and FOXO1 activity. However, the direct and IGF1-dependent actions of STAT5b cannot fully account for enhanced GCK activity and lipogenic gene expression observed after aHepGHRkd, suggesting other GHR-mediated signals are involved.These studies demonstrate hepatocyte GHR-signaling controls hepatic glycolysis, DNL, steatosis and hepatic insulin sensitivity indirectly (via IGF1) and directly (via STAT5b). The relative contribution of these indirect and direct actions of GH on hepatocytes is modified by insulin and nutrient availability. These results improve our understanding of the physiologic actions of GH on regulating adult metabolism to protect against NAFLD progression." @default.
- W4376257027 created "2023-05-13" @default.
- W4376257027 creator A5005394810 @default.
- W4376257027 creator A5008622217 @default.
- W4376257027 creator A5009231249 @default.
- W4376257027 creator A5009268439 @default.
- W4376257027 creator A5025336530 @default.
- W4376257027 creator A5040695004 @default.
- W4376257027 creator A5044985980 @default.
- W4376257027 creator A5050645798 @default.
- W4376257027 creator A5052581511 @default.
- W4376257027 creator A5057755569 @default.
- W4376257027 creator A5064236916 @default.
- W4376257027 creator A5075065022 @default.
- W4376257027 date "2023-07-01" @default.
- W4376257027 modified "2023-10-16" @default.
- W4376257027 title "Direct and systemic actions of growth hormone receptor (GHR)-signaling on hepatic glycolysis, de novo lipogenesis and insulin sensitivity, associated with steatosis" @default.
- W4376257027 cites W1967717006 @default.
- W4376257027 cites W1974413554 @default.
- W4376257027 cites W1986865930 @default.
- W4376257027 cites W2002790732 @default.
- W4376257027 cites W2021006437 @default.
- W4376257027 cites W2028551167 @default.
- W4376257027 cites W2030729252 @default.
- W4376257027 cites W2043114917 @default.
- W4376257027 cites W2056459557 @default.
- W4376257027 cites W2062687197 @default.
- W4376257027 cites W2067231173 @default.
- W4376257027 cites W2092608666 @default.
- W4376257027 cites W2099464373 @default.
- W4376257027 cites W2124966147 @default.
- W4376257027 cites W2126045019 @default.
- W4376257027 cites W2138077456 @default.
- W4376257027 cites W2144665452 @default.
- W4376257027 cites W2162422715 @default.
- W4376257027 cites W2165492602 @default.
- W4376257027 cites W2169589032 @default.
- W4376257027 cites W2226205752 @default.
- W4376257027 cites W2327737248 @default.
- W4376257027 cites W2509588620 @default.
- W4376257027 cites W2537306469 @default.
- W4376257027 cites W2544419303 @default.
- W4376257027 cites W2604947595 @default.
- W4376257027 cites W2626648542 @default.
- W4376257027 cites W2886865853 @default.
- W4376257027 cites W2894967837 @default.
- W4376257027 cites W2936708687 @default.
- W4376257027 cites W2990706223 @default.
- W4376257027 cites W3081542976 @default.
- W4376257027 cites W3087324424 @default.
- W4376257027 cites W3088654978 @default.
- W4376257027 cites W3094366560 @default.
- W4376257027 cites W3104756028 @default.
- W4376257027 cites W3160407865 @default.
- W4376257027 cites W3202465970 @default.
- W4376257027 cites W3206281476 @default.
- W4376257027 cites W4206036392 @default.
- W4376257027 cites W4213286674 @default.
- W4376257027 cites W4226063190 @default.
- W4376257027 cites W4229038697 @default.
- W4376257027 cites W4283017342 @default.
- W4376257027 cites W4283766898 @default.
- W4376257027 cites W4306895325 @default.
- W4376257027 cites W4306902090 @default.
- W4376257027 cites W4308684923 @default.
- W4376257027 cites W4309348832 @default.
- W4376257027 doi "https://doi.org/10.1016/j.metabol.2023.155589" @default.
- W4376257027 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37182789" @default.
- W4376257027 hasPublicationYear "2023" @default.
- W4376257027 type Work @default.
- W4376257027 citedByCount "1" @default.
- W4376257027 countsByYear W43762570272023 @default.
- W4376257027 crossrefType "journal-article" @default.
- W4376257027 hasAuthorship W4376257027A5005394810 @default.
- W4376257027 hasAuthorship W4376257027A5008622217 @default.
- W4376257027 hasAuthorship W4376257027A5009231249 @default.
- W4376257027 hasAuthorship W4376257027A5009268439 @default.
- W4376257027 hasAuthorship W4376257027A5025336530 @default.
- W4376257027 hasAuthorship W4376257027A5040695004 @default.
- W4376257027 hasAuthorship W4376257027A5044985980 @default.
- W4376257027 hasAuthorship W4376257027A5050645798 @default.
- W4376257027 hasAuthorship W4376257027A5052581511 @default.
- W4376257027 hasAuthorship W4376257027A5057755569 @default.
- W4376257027 hasAuthorship W4376257027A5064236916 @default.
- W4376257027 hasAuthorship W4376257027A5075065022 @default.
- W4376257027 hasBestOaLocation W43762570271 @default.
- W4376257027 hasConcept C112446052 @default.
- W4376257027 hasConcept C113675107 @default.
- W4376257027 hasConcept C126322002 @default.
- W4376257027 hasConcept C134018914 @default.
- W4376257027 hasConcept C141359234 @default.
- W4376257027 hasConcept C17093226 @default.
- W4376257027 hasConcept C202751555 @default.
- W4376257027 hasConcept C2776175330 @default.
- W4376257027 hasConcept C2776200302 @default.
- W4376257027 hasConcept C2777391703 @default.
- W4376257027 hasConcept C2778772119 @default.
- W4376257027 hasConcept C2779134260 @default.