Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376269132> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4376269132 endingPage "106380" @default.
- W4376269132 startingPage "106380" @default.
- W4376269132 abstract "In this study, we developed a comprehensive modeling framework for simulation of ozonation process using combination of artificial intelligence and computational fluid dynamics (CFD). The process is carried out in a hollow-fiber membrane contactor in which the concentration data of ozone was obtained by solution of mass transfer equations, and then the results were used for artificial intelligence modeling. We used three different machine learning models to predict concentration of ozone (C) in a system based on its coordinates, i.e., r and z. The models were optimized using the Bat Algorithm (BA) and were trained on a dataset consisting of over 10,000 data points. The three models developed were Support Vector Regression (SVR), Decision Tree Regressor, and Orthogonal Matching Pursuit (OMP). These models were evaluated using three common metrics — Mean Squared Error (MSE), R-squared (R2), and Mean Absolute Error (MAE). Our results indicated that the SVR model overperformed the other two models in terms of all evaluation metrics. Specifically, the SVR model achieved an MSE of 0.003, an R2 of 0.998, and an MAE of 0.046. The Decision Tree Regressor and OMP models achieved less favorable results with MSEs of 0.007 and 0.221, R2 scores of 0.996 and 0.878, and MAEs of 0.056 and 0.359, respectively." @default.
- W4376269132 created "2023-05-13" @default.
- W4376269132 creator A5011894823 @default.
- W4376269132 creator A5028946953 @default.
- W4376269132 creator A5080139401 @default.
- W4376269132 date "2023-08-01" @default.
- W4376269132 modified "2023-09-25" @default.
- W4376269132 title "Numerical simulation of ozonation in hollow-fiber membranes for wastewater treatment" @default.
- W4376269132 cites W1964357740 @default.
- W4376269132 cites W1987552279 @default.
- W4376269132 cites W2154332973 @default.
- W4376269132 cites W4200410454 @default.
- W4376269132 cites W4220797258 @default.
- W4376269132 cites W4282920936 @default.
- W4376269132 cites W4289260360 @default.
- W4376269132 cites W4306894148 @default.
- W4376269132 cites W4313442730 @default.
- W4376269132 cites W4313645238 @default.
- W4376269132 cites W4317374323 @default.
- W4376269132 cites W4322154853 @default.
- W4376269132 cites W4322632044 @default.
- W4376269132 cites W4322806580 @default.
- W4376269132 cites W4323362794 @default.
- W4376269132 doi "https://doi.org/10.1016/j.engappai.2023.106380" @default.
- W4376269132 hasPublicationYear "2023" @default.
- W4376269132 type Work @default.
- W4376269132 citedByCount "2" @default.
- W4376269132 countsByYear W43762691322023 @default.
- W4376269132 crossrefType "journal-article" @default.
- W4376269132 hasAuthorship W4376269132A5011894823 @default.
- W4376269132 hasAuthorship W4376269132A5028946953 @default.
- W4376269132 hasAuthorship W4376269132A5080139401 @default.
- W4376269132 hasConcept C105795698 @default.
- W4376269132 hasConcept C119857082 @default.
- W4376269132 hasConcept C121332964 @default.
- W4376269132 hasConcept C12267149 @default.
- W4376269132 hasConcept C139945424 @default.
- W4376269132 hasConcept C154945302 @default.
- W4376269132 hasConcept C163258240 @default.
- W4376269132 hasConcept C185592680 @default.
- W4376269132 hasConcept C186060115 @default.
- W4376269132 hasConcept C33923547 @default.
- W4376269132 hasConcept C41008148 @default.
- W4376269132 hasConcept C43617362 @default.
- W4376269132 hasConcept C51038369 @default.
- W4376269132 hasConcept C78592999 @default.
- W4376269132 hasConcept C84525736 @default.
- W4376269132 hasConcept C86803240 @default.
- W4376269132 hasConcept C97355855 @default.
- W4376269132 hasConceptScore W4376269132C105795698 @default.
- W4376269132 hasConceptScore W4376269132C119857082 @default.
- W4376269132 hasConceptScore W4376269132C121332964 @default.
- W4376269132 hasConceptScore W4376269132C12267149 @default.
- W4376269132 hasConceptScore W4376269132C139945424 @default.
- W4376269132 hasConceptScore W4376269132C154945302 @default.
- W4376269132 hasConceptScore W4376269132C163258240 @default.
- W4376269132 hasConceptScore W4376269132C185592680 @default.
- W4376269132 hasConceptScore W4376269132C186060115 @default.
- W4376269132 hasConceptScore W4376269132C33923547 @default.
- W4376269132 hasConceptScore W4376269132C41008148 @default.
- W4376269132 hasConceptScore W4376269132C43617362 @default.
- W4376269132 hasConceptScore W4376269132C51038369 @default.
- W4376269132 hasConceptScore W4376269132C78592999 @default.
- W4376269132 hasConceptScore W4376269132C84525736 @default.
- W4376269132 hasConceptScore W4376269132C86803240 @default.
- W4376269132 hasConceptScore W4376269132C97355855 @default.
- W4376269132 hasLocation W43762691321 @default.
- W4376269132 hasOpenAccess W4376269132 @default.
- W4376269132 hasPrimaryLocation W43762691321 @default.
- W4376269132 hasRelatedWork W1470425429 @default.
- W4376269132 hasRelatedWork W1996541855 @default.
- W4376269132 hasRelatedWork W2937631562 @default.
- W4376269132 hasRelatedWork W3186233728 @default.
- W4376269132 hasRelatedWork W3195168932 @default.
- W4376269132 hasRelatedWork W3210918776 @default.
- W4376269132 hasRelatedWork W4224946860 @default.
- W4376269132 hasRelatedWork W4318350883 @default.
- W4376269132 hasRelatedWork W4321636153 @default.
- W4376269132 hasRelatedWork W4328134586 @default.
- W4376269132 hasVolume "123" @default.
- W4376269132 isParatext "false" @default.
- W4376269132 isRetracted "false" @default.
- W4376269132 workType "article" @default.