Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376269314> ?p ?o ?g. }
- W4376269314 endingPage "2961" @default.
- W4376269314 startingPage "2944" @default.
- W4376269314 abstract "Modern high-throughput biomedical devices routinely produce data on a large scale, and the analysis of high-dimensional datasets has become commonplace in biomedical studies. However, given thousands or tens of thousands of measured variables in these datasets, extracting meaningful features poses a challenge. In this article, we propose a procedure to evaluate the strength of the associations between a nominal (categorical) response variable and multiple features simultaneously. Specifically, we propose a framework of large-scale multiple testing under arbitrary correlation dependency among test statistics. First, marginal multinomial regressions are performed for each feature individually. Second, we use an approach of multiple marginal models for each baseline-category pair to establish asymptotic joint normality of the stacked vector of the marginal multinomial regression coefficients. Third, we estimate the (limiting) covariance matrix between the estimated coefficients from all marginal models. Finally, our approach approximates the realized false discovery proportion of a thresholding procedure for the marginal p-values for each baseline-category logit pair. The proposed approach offers a sensible trade-off between the expected numbers of true and false findings. Furthermore, we demonstrate a practical application of the method on hyperspectral imaging data. This dataset is obtained by a matrix-assisted laser desorption/ionization (MALDI) instrument. MALDI demonstrates tremendous potential for clinical diagnosis, particularly for cancer research. In our application, the nominal response categories represent cancer (sub-)types." @default.
- W4376269314 created "2023-05-13" @default.
- W4376269314 creator A5026392908 @default.
- W4376269314 creator A5047993355 @default.
- W4376269314 date "2023-05-12" @default.
- W4376269314 modified "2023-09-26" @default.
- W4376269314 title "Multiple multi‐sample testing under arbitrary covariance dependency" @default.
- W4376269314 cites W1447278616 @default.
- W4376269314 cites W1511750995 @default.
- W4376269314 cites W1522547150 @default.
- W4376269314 cites W1596515083 @default.
- W4376269314 cites W1817391411 @default.
- W4376269314 cites W1965138864 @default.
- W4376269314 cites W2002052115 @default.
- W4376269314 cites W2005494216 @default.
- W4376269314 cites W2006145698 @default.
- W4376269314 cites W2024103316 @default.
- W4376269314 cites W2030999406 @default.
- W4376269314 cites W2044666483 @default.
- W4376269314 cites W2076983043 @default.
- W4376269314 cites W2090430326 @default.
- W4376269314 cites W2102976886 @default.
- W4376269314 cites W2112659545 @default.
- W4376269314 cites W2116633244 @default.
- W4376269314 cites W2122135230 @default.
- W4376269314 cites W2127897480 @default.
- W4376269314 cites W2149860264 @default.
- W4376269314 cites W2150573935 @default.
- W4376269314 cites W2183462685 @default.
- W4376269314 cites W2285194131 @default.
- W4376269314 cites W2415936679 @default.
- W4376269314 cites W2498776581 @default.
- W4376269314 cites W2550553840 @default.
- W4376269314 cites W2611214388 @default.
- W4376269314 cites W2624124934 @default.
- W4376269314 cites W2788835989 @default.
- W4376269314 cites W2900334494 @default.
- W4376269314 cites W2962930609 @default.
- W4376269314 cites W3102030229 @default.
- W4376269314 cites W3104586926 @default.
- W4376269314 cites W3174206601 @default.
- W4376269314 cites W3194020272 @default.
- W4376269314 cites W3209855775 @default.
- W4376269314 doi "https://doi.org/10.1002/sim.9761" @default.
- W4376269314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37173292" @default.
- W4376269314 hasPublicationYear "2023" @default.
- W4376269314 type Work @default.
- W4376269314 citedByCount "1" @default.
- W4376269314 countsByYear W43762693142023 @default.
- W4376269314 crossrefType "journal-article" @default.
- W4376269314 hasAuthorship W4376269314A5026392908 @default.
- W4376269314 hasAuthorship W4376269314A5047993355 @default.
- W4376269314 hasBestOaLocation W43762693141 @default.
- W4376269314 hasConcept C105795698 @default.
- W4376269314 hasConcept C107673813 @default.
- W4376269314 hasConcept C117568660 @default.
- W4376269314 hasConcept C119857082 @default.
- W4376269314 hasConcept C129848803 @default.
- W4376269314 hasConcept C138885662 @default.
- W4376269314 hasConcept C152877465 @default.
- W4376269314 hasConcept C153180895 @default.
- W4376269314 hasConcept C154945302 @default.
- W4376269314 hasConcept C178650346 @default.
- W4376269314 hasConcept C185142706 @default.
- W4376269314 hasConcept C185429906 @default.
- W4376269314 hasConcept C192065140 @default.
- W4376269314 hasConcept C197656967 @default.
- W4376269314 hasConcept C2776401178 @default.
- W4376269314 hasConcept C33923547 @default.
- W4376269314 hasConcept C41008148 @default.
- W4376269314 hasConcept C41895202 @default.
- W4376269314 hasConcept C5274069 @default.
- W4376269314 hasConcept C95923904 @default.
- W4376269314 hasConceptScore W4376269314C105795698 @default.
- W4376269314 hasConceptScore W4376269314C107673813 @default.
- W4376269314 hasConceptScore W4376269314C117568660 @default.
- W4376269314 hasConceptScore W4376269314C119857082 @default.
- W4376269314 hasConceptScore W4376269314C129848803 @default.
- W4376269314 hasConceptScore W4376269314C138885662 @default.
- W4376269314 hasConceptScore W4376269314C152877465 @default.
- W4376269314 hasConceptScore W4376269314C153180895 @default.
- W4376269314 hasConceptScore W4376269314C154945302 @default.
- W4376269314 hasConceptScore W4376269314C178650346 @default.
- W4376269314 hasConceptScore W4376269314C185142706 @default.
- W4376269314 hasConceptScore W4376269314C185429906 @default.
- W4376269314 hasConceptScore W4376269314C192065140 @default.
- W4376269314 hasConceptScore W4376269314C197656967 @default.
- W4376269314 hasConceptScore W4376269314C2776401178 @default.
- W4376269314 hasConceptScore W4376269314C33923547 @default.
- W4376269314 hasConceptScore W4376269314C41008148 @default.
- W4376269314 hasConceptScore W4376269314C41895202 @default.
- W4376269314 hasConceptScore W4376269314C5274069 @default.
- W4376269314 hasConceptScore W4376269314C95923904 @default.
- W4376269314 hasFunder F4320320879 @default.
- W4376269314 hasIssue "17" @default.
- W4376269314 hasLocation W43762693141 @default.
- W4376269314 hasLocation W43762693142 @default.
- W4376269314 hasLocation W43762693143 @default.