Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376269315> ?p ?o ?g. }
- W4376269315 endingPage "113596" @default.
- W4376269315 startingPage "113596" @default.
- W4376269315 abstract "Accurate monitoring of the spatial-temporal distribution and variability of phytoplankton group (PG) composition is of vital importance in better understanding of marine ecosystem dynamics and biogeochemical cycles. While existing bio-optical algorithms provide valuable information, relying solely on satellite ocean color data remains insufficient to obtain high-precision retrieval of PG due to the intricate nature of the bio-optical signal and PG composition itself. An interdisciplinary approach combining advancements in machine learning with big data from ocean observations and simulations offers a promising avenue for more accurate quantification of PG composition. In this study, an ensemble learning approach, called the spatial-temporal-ecological ensemble (STEE) model, is developed to construct a robust prediction model for eight distinct phytoplankton groups (i.e., Diatoms, Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, Green Algae, Prokaryotes, and Prochlorococcus). The proposed method introduces multiple data simultaneously: ocean color, physical oceanographic, biogeochemical, and spatial and temporal information. An ensemble strategy is applied to increase the performance of the model by merging three advanced machine-learning algorithms. The combined validation of multiple cross-validation (CV) strategies (i.e., standard, spatial block, and temporal block CVs) shows that the proposed STEE model has superior robustness and generalization ability. In addition, the analysis shows a high degree of concordance between the independent datasets and the modeled estimations for long-time series sites, indicating that the STEE model is capable of effectively monitoring long-term trends in phytoplankton group composition. Finally, the proposed model was utilized to retrieve global monthly phytoplankton group products (STEE-PG) over an extended period (September 1997 to May 2020), and comparisons demonstrated better rationality of spatio-temporal distribution than existing satellite-derived phytoplankton group products. Hence, this new model comprehensively integrates all kinds of observation data and yields long-term global PG products with high accuracy, which will enhance our understanding of the response of marine ecosystems to environmental and climate change." @default.
- W4376269315 created "2023-05-13" @default.
- W4376269315 creator A5010199453 @default.
- W4376269315 creator A5047466395 @default.
- W4376269315 creator A5062332243 @default.
- W4376269315 creator A5064404845 @default.
- W4376269315 date "2023-08-01" @default.
- W4376269315 modified "2023-09-25" @default.
- W4376269315 title "Marine big data-driven ensemble learning for estimating global phytoplankton group composition over two decades (1997–2020)" @default.
- W4376269315 cites W1548848902 @default.
- W4376269315 cites W1586252666 @default.
- W4376269315 cites W1775925574 @default.
- W4376269315 cites W1973749534 @default.
- W4376269315 cites W1979058049 @default.
- W4376269315 cites W2000946245 @default.
- W4376269315 cites W2017370637 @default.
- W4376269315 cites W2018291779 @default.
- W4376269315 cites W2036677156 @default.
- W4376269315 cites W2038720636 @default.
- W4376269315 cites W2051332595 @default.
- W4376269315 cites W2062976607 @default.
- W4376269315 cites W2093463708 @default.
- W4376269315 cites W2101589741 @default.
- W4376269315 cites W2112796928 @default.
- W4376269315 cites W2115359280 @default.
- W4376269315 cites W2124098957 @default.
- W4376269315 cites W2128876958 @default.
- W4376269315 cites W2137572869 @default.
- W4376269315 cites W2141515878 @default.
- W4376269315 cites W2146292423 @default.
- W4376269315 cites W2155290228 @default.
- W4376269315 cites W2156665896 @default.
- W4376269315 cites W2158863451 @default.
- W4376269315 cites W2163330578 @default.
- W4376269315 cites W2166949492 @default.
- W4376269315 cites W2167705142 @default.
- W4376269315 cites W2209934187 @default.
- W4376269315 cites W2560136348 @default.
- W4376269315 cites W2589592374 @default.
- W4376269315 cites W2594738842 @default.
- W4376269315 cites W2604230727 @default.
- W4376269315 cites W2770854636 @default.
- W4376269315 cites W2789701861 @default.
- W4376269315 cites W2911964244 @default.
- W4376269315 cites W2913323966 @default.
- W4376269315 cites W2922127343 @default.
- W4376269315 cites W2969309273 @default.
- W4376269315 cites W2979186211 @default.
- W4376269315 cites W2981516216 @default.
- W4376269315 cites W2981879507 @default.
- W4376269315 cites W2984947547 @default.
- W4376269315 cites W2993514765 @default.
- W4376269315 cites W3007598347 @default.
- W4376269315 cites W3045569511 @default.
- W4376269315 cites W3049143832 @default.
- W4376269315 cites W3085784695 @default.
- W4376269315 cites W3120014374 @default.
- W4376269315 cites W3138602332 @default.
- W4376269315 cites W3172600715 @default.
- W4376269315 cites W3194988337 @default.
- W4376269315 cites W3198868850 @default.
- W4376269315 cites W4220808180 @default.
- W4376269315 cites W4220972113 @default.
- W4376269315 cites W4224247190 @default.
- W4376269315 cites W4283167873 @default.
- W4376269315 cites W4292604031 @default.
- W4376269315 doi "https://doi.org/10.1016/j.rse.2023.113596" @default.
- W4376269315 hasPublicationYear "2023" @default.
- W4376269315 type Work @default.
- W4376269315 citedByCount "0" @default.
- W4376269315 crossrefType "journal-article" @default.
- W4376269315 hasAuthorship W4376269315A5010199453 @default.
- W4376269315 hasAuthorship W4376269315A5047466395 @default.
- W4376269315 hasAuthorship W4376269315A5062332243 @default.
- W4376269315 hasAuthorship W4376269315A5064404845 @default.
- W4376269315 hasConcept C142796444 @default.
- W4376269315 hasConcept C18903297 @default.
- W4376269315 hasConcept C205649164 @default.
- W4376269315 hasConcept C2780892065 @default.
- W4376269315 hasConcept C39432304 @default.
- W4376269315 hasConcept C41008148 @default.
- W4376269315 hasConcept C62649853 @default.
- W4376269315 hasConcept C71915725 @default.
- W4376269315 hasConcept C86803240 @default.
- W4376269315 hasConceptScore W4376269315C142796444 @default.
- W4376269315 hasConceptScore W4376269315C18903297 @default.
- W4376269315 hasConceptScore W4376269315C205649164 @default.
- W4376269315 hasConceptScore W4376269315C2780892065 @default.
- W4376269315 hasConceptScore W4376269315C39432304 @default.
- W4376269315 hasConceptScore W4376269315C41008148 @default.
- W4376269315 hasConceptScore W4376269315C62649853 @default.
- W4376269315 hasConceptScore W4376269315C71915725 @default.
- W4376269315 hasConceptScore W4376269315C86803240 @default.
- W4376269315 hasLocation W43762693151 @default.
- W4376269315 hasOpenAccess W4376269315 @default.
- W4376269315 hasPrimaryLocation W43762693151 @default.
- W4376269315 hasRelatedWork W1610847717 @default.
- W4376269315 hasRelatedWork W1981837743 @default.