Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376272563> ?p ?o ?g. }
- W4376272563 endingPage "316" @default.
- W4376272563 startingPage "285" @default.
- W4376272563 abstract "Data processing has always been a part of transmission electron microscopy (TEM) image and spectroscopy analysis. In this chapter, the authors revisit the historical aspect of image/data processing, understand the basic concepts of machine learning (ML), open-source tools available, select applications, future needs, and limitations. Image simulations and processing form an integral part of our ability to decipher TEM/scanning transmission electron microscopy (STEM) data with confidence. The authors present the fundamentals behind the image processing and simulations as they are now being accomplished using ML applications. One of the other major challenges facing in-situ TEM/STEM measurements is to save, transfer, and store large datasets at the rate they are generated. In the last several years, AI and ML have taken central stage in the development of science and engineering applications, from automatic control systems to data processing and image recognition." @default.
- W4376272563 created "2023-05-13" @default.
- W4376272563 date "2023-05-12" @default.
- W4376272563 modified "2023-10-12" @default.
- W4376272563 title "Data Processing and Machine Learning" @default.
- W4376272563 cites W1575442520 @default.
- W4376272563 cites W1966114584 @default.
- W4376272563 cites W1967312386 @default.
- W4376272563 cites W1970014398 @default.
- W4376272563 cites W1977556410 @default.
- W4376272563 cites W1987731163 @default.
- W4376272563 cites W1989447781 @default.
- W4376272563 cites W1991601155 @default.
- W4376272563 cites W1992089079 @default.
- W4376272563 cites W1993569031 @default.
- W4376272563 cites W2007075777 @default.
- W4376272563 cites W2015221684 @default.
- W4376272563 cites W2022676803 @default.
- W4376272563 cites W2023089366 @default.
- W4376272563 cites W2030071215 @default.
- W4376272563 cites W2036316183 @default.
- W4376272563 cites W2043038046 @default.
- W4376272563 cites W2050515269 @default.
- W4376272563 cites W2055790580 @default.
- W4376272563 cites W2057031130 @default.
- W4376272563 cites W2061171222 @default.
- W4376272563 cites W2061915516 @default.
- W4376272563 cites W2067248552 @default.
- W4376272563 cites W2069845974 @default.
- W4376272563 cites W2071259889 @default.
- W4376272563 cites W2076930811 @default.
- W4376272563 cites W2087348835 @default.
- W4376272563 cites W2102636083 @default.
- W4376272563 cites W2114416296 @default.
- W4376272563 cites W2127837300 @default.
- W4376272563 cites W2134095515 @default.
- W4376272563 cites W2163786183 @default.
- W4376272563 cites W2217912240 @default.
- W4376272563 cites W2302501749 @default.
- W4376272563 cites W2316330126 @default.
- W4376272563 cites W2395611524 @default.
- W4376272563 cites W2508457857 @default.
- W4376272563 cites W2564164422 @default.
- W4376272563 cites W2586460992 @default.
- W4376272563 cites W2589130206 @default.
- W4376272563 cites W2605047439 @default.
- W4376272563 cites W2618530766 @default.
- W4376272563 cites W2742348474 @default.
- W4376272563 cites W2742903995 @default.
- W4376272563 cites W2771733300 @default.
- W4376272563 cites W2779169403 @default.
- W4376272563 cites W2787089463 @default.
- W4376272563 cites W2787894218 @default.
- W4376272563 cites W2804431384 @default.
- W4376272563 cites W2805413688 @default.
- W4376272563 cites W2919115771 @default.
- W4376272563 cites W2942153559 @default.
- W4376272563 cites W2952597205 @default.
- W4376272563 cites W2958882108 @default.
- W4376272563 cites W2962963152 @default.
- W4376272563 cites W2963899413 @default.
- W4376272563 cites W2971847579 @default.
- W4376272563 cites W2982409629 @default.
- W4376272563 cites W2986771449 @default.
- W4376272563 cites W3013379800 @default.
- W4376272563 cites W3015942418 @default.
- W4376272563 cites W3036207161 @default.
- W4376272563 cites W3084979415 @default.
- W4376272563 cites W3085230000 @default.
- W4376272563 cites W3092437961 @default.
- W4376272563 cites W3093834713 @default.
- W4376272563 cites W3094545446 @default.
- W4376272563 cites W3123480017 @default.
- W4376272563 cites W3125464460 @default.
- W4376272563 cites W3129191900 @default.
- W4376272563 cites W3153383187 @default.
- W4376272563 cites W3157359693 @default.
- W4376272563 cites W3158122532 @default.
- W4376272563 cites W3162531821 @default.
- W4376272563 cites W3164213568 @default.
- W4376272563 cites W3176870472 @default.
- W4376272563 cites W3178883367 @default.
- W4376272563 cites W3180225019 @default.
- W4376272563 cites W3182604975 @default.
- W4376272563 cites W3183861986 @default.
- W4376272563 cites W3201061622 @default.
- W4376272563 cites W3203832168 @default.
- W4376272563 cites W3212568868 @default.
- W4376272563 cites W3213758824 @default.
- W4376272563 cites W4225083953 @default.
- W4376272563 cites W4225434606 @default.
- W4376272563 cites W4229033997 @default.
- W4376272563 cites W4256397383 @default.
- W4376272563 cites W4283377556 @default.
- W4376272563 cites W4296613176 @default.
- W4376272563 doi "https://doi.org/10.1002/9783527834822.ch9" @default.
- W4376272563 hasPublicationYear "2023" @default.
- W4376272563 type Work @default.