Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376273617> ?p ?o ?g. }
- W4376273617 endingPage "196" @default.
- W4376273617 startingPage "196" @default.
- W4376273617 abstract "In recent years, the Chinese tourism industry has developed rapidly, leading to significant changes in the relationship between people and space patterns in scenic regions. To attract more tourists, the surrounding environment of a scenic region is usually well developed, attracting a large number of human activities, which creates a cognitive range for the scenic region. From the perspective of tourism, tourists’ perceptions of the region in which tourist attractions are located in a city usually differ from the objective region of the scenic spots. Among them, social media serves as an important medium for tourists to share information about scenic spots and for potential tourists to learn scenic spot information, and it interacts to influence people’s perceptions of the destination image. Extracting the names of tourist attractions from social media data and exploring their spatial distribution patterns is the basis for research on the cognitive region of tourist attractions. This study takes Hangzhou, a well-known tourist city in China, as a case study to explore the human cognitive region of its popular scenic spots. First, we propose a Chinese tourist attraction name extraction model based on RoBERTa-BiLSTM-CRF to extract the names of tourist attractions from social media data. Then, we use a multi-distance spatial clustering method called Ripley’s K to filter the extracted tourist attraction names. Finally, we combine road network data and polygons generated using the chi-shape algorithm to construct the vague cognitive regions of each scenic spot. The results show that the classification indicators of our proposed tourist attraction name extraction model are significantly better than those of previous toponym extraction models and algorithms (precision = 0.7371, recall = 0.6926, F1 = 0.7141), and the extracted vague cognitive regions of tourist attractions also generally conform to people’s habitual cognition." @default.
- W4376273617 created "2023-05-13" @default.
- W4376273617 creator A5001541516 @default.
- W4376273617 creator A5006033150 @default.
- W4376273617 creator A5014292481 @default.
- W4376273617 creator A5016082098 @default.
- W4376273617 creator A5026433926 @default.
- W4376273617 creator A5040855620 @default.
- W4376273617 creator A5043017679 @default.
- W4376273617 creator A5045504628 @default.
- W4376273617 creator A5061073566 @default.
- W4376273617 creator A5064956525 @default.
- W4376273617 creator A5065418938 @default.
- W4376273617 creator A5067893949 @default.
- W4376273617 date "2023-05-12" @default.
- W4376273617 modified "2023-10-05" @default.
- W4376273617 title "A Deep Transfer Learning Toponym Extraction and Geospatial Clustering Framework for Investigating Scenic Spots as Cognitive Regions" @default.
- W4376273617 cites W1764053936 @default.
- W4376273617 cites W1971307080 @default.
- W4376273617 cites W2032115636 @default.
- W4376273617 cites W2076372637 @default.
- W4376273617 cites W2102390824 @default.
- W4376273617 cites W2140517780 @default.
- W4376273617 cites W2164799852 @default.
- W4376273617 cites W2620052956 @default.
- W4376273617 cites W2735342048 @default.
- W4376273617 cites W2765854852 @default.
- W4376273617 cites W2792776725 @default.
- W4376273617 cites W2793058421 @default.
- W4376273617 cites W2797784614 @default.
- W4376273617 cites W2808008092 @default.
- W4376273617 cites W2894391462 @default.
- W4376273617 cites W2902550418 @default.
- W4376273617 cites W2909828422 @default.
- W4376273617 cites W2970078994 @default.
- W4376273617 cites W2979116315 @default.
- W4376273617 cites W2994263371 @default.
- W4376273617 cites W2994306952 @default.
- W4376273617 cites W2996079839 @default.
- W4376273617 cites W2996916682 @default.
- W4376273617 cites W3005625484 @default.
- W4376273617 cites W3009397860 @default.
- W4376273617 cites W3024097351 @default.
- W4376273617 cites W302567880 @default.
- W4376273617 cites W3088816749 @default.
- W4376273617 cites W3093533436 @default.
- W4376273617 cites W3135003338 @default.
- W4376273617 cites W3136058829 @default.
- W4376273617 cites W3138359330 @default.
- W4376273617 cites W3139007848 @default.
- W4376273617 cites W3170558324 @default.
- W4376273617 cites W3174134073 @default.
- W4376273617 cites W3198647952 @default.
- W4376273617 cites W3202411149 @default.
- W4376273617 cites W3217025580 @default.
- W4376273617 cites W4207011826 @default.
- W4376273617 cites W4210615390 @default.
- W4376273617 cites W4212903126 @default.
- W4376273617 cites W4220884847 @default.
- W4376273617 cites W4224227985 @default.
- W4376273617 cites W4241422031 @default.
- W4376273617 cites W4303685555 @default.
- W4376273617 cites W4316363711 @default.
- W4376273617 cites W4320527580 @default.
- W4376273617 doi "https://doi.org/10.3390/ijgi12050196" @default.
- W4376273617 hasPublicationYear "2023" @default.
- W4376273617 type Work @default.
- W4376273617 citedByCount "1" @default.
- W4376273617 crossrefType "journal-article" @default.
- W4376273617 hasAuthorship W4376273617A5001541516 @default.
- W4376273617 hasAuthorship W4376273617A5006033150 @default.
- W4376273617 hasAuthorship W4376273617A5014292481 @default.
- W4376273617 hasAuthorship W4376273617A5016082098 @default.
- W4376273617 hasAuthorship W4376273617A5026433926 @default.
- W4376273617 hasAuthorship W4376273617A5040855620 @default.
- W4376273617 hasAuthorship W4376273617A5043017679 @default.
- W4376273617 hasAuthorship W4376273617A5045504628 @default.
- W4376273617 hasAuthorship W4376273617A5061073566 @default.
- W4376273617 hasAuthorship W4376273617A5064956525 @default.
- W4376273617 hasAuthorship W4376273617A5065418938 @default.
- W4376273617 hasAuthorship W4376273617A5067893949 @default.
- W4376273617 hasBestOaLocation W43762736171 @default.
- W4376273617 hasConcept C136764020 @default.
- W4376273617 hasConcept C154945302 @default.
- W4376273617 hasConcept C15744967 @default.
- W4376273617 hasConcept C166957645 @default.
- W4376273617 hasConcept C169760540 @default.
- W4376273617 hasConcept C169900460 @default.
- W4376273617 hasConcept C18918823 @default.
- W4376273617 hasConcept C199360897 @default.
- W4376273617 hasConcept C205649164 @default.
- W4376273617 hasConcept C26760741 @default.
- W4376273617 hasConcept C2780801425 @default.
- W4376273617 hasConcept C41008148 @default.
- W4376273617 hasConcept C518677369 @default.
- W4376273617 hasConcept C58640448 @default.
- W4376273617 hasConcept C73555534 @default.
- W4376273617 hasConcept C9770341 @default.