Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376274549> ?p ?o ?g. }
- W4376274549 endingPage "110263" @default.
- W4376274549 startingPage "110263" @default.
- W4376274549 abstract "With the rapid advancement in the battery industry, more accurate and advanced state estimation methods are required to meet the performance requirements. The State of Health (SOH) estimation is performed in the battery management system (BMS), which provides the qualitative measure of the capability of a lithium-ion battery (LIB), in terms of capacity or internal resistance. Theoretically, the cell capacity is obtained by complete charge and discharge of the cell but in practical scenario, complete charge or discharge is never the case. To address this issue of dynamic discharge, this paper presents an evolving model-based SOH estimation, predicting the capacity fade of the cell extracted from the incomplete discharge conditions as in the case of dynamic driving scenarios. The evolving algorithm uses Neural Network, which features an interval fuzzy set, with conjectural jump positions. For better identification of overlaps between the classes, the quantum fuzzy set uses graded membership function. The number of rules are automatically adjusted and evolved, in the quantum fuzzy set using Decoupled Extended Kalman Filter (DEKF) for parameter estimation. The proposed method uses voltage, current and sampling time data to estimate the capacity, over a period of 600 charging-discharging cycles of Nickel Manganese Cobalt Oxide (NMC) chemistry batteries. The dynamic discharge voltage data is obtained from the periodic characterization tests and is used for predict the complete discharge voltage. The full voltage profile has been forecasted using Long-Short Term Memory (LSTM) network and the subsequent capacity has been estimated using evolving Quantum Fuzzy Neural Network (eQFNN) with an RMSE of less than 5% making it suitable for on-board applications. The results are simulated in MATLAB 2020b and are validated using experimental verification in Battery Testing Lab (BTL), IIT Delhi." @default.
- W4376274549 created "2023-05-13" @default.
- W4376274549 creator A5056989509 @default.
- W4376274549 creator A5057446475 @default.
- W4376274549 creator A5070424516 @default.
- W4376274549 creator A5073634264 @default.
- W4376274549 date "2023-08-01" @default.
- W4376274549 modified "2023-09-25" @default.
- W4376274549 title "An Evolving Quantum Fuzzy Neural Network for online State-of-Health estimation of Li-ion cell" @default.
- W4376274549 cites W1992329416 @default.
- W4376274549 cites W1993232141 @default.
- W4376274549 cites W2017136542 @default.
- W4376274549 cites W2022199980 @default.
- W4376274549 cites W2050591158 @default.
- W4376274549 cites W2063093947 @default.
- W4376274549 cites W2094603430 @default.
- W4376274549 cites W2116119284 @default.
- W4376274549 cites W2131246644 @default.
- W4376274549 cites W2160041907 @default.
- W4376274549 cites W2165640958 @default.
- W4376274549 cites W2167503549 @default.
- W4376274549 cites W2293231618 @default.
- W4376274549 cites W2345979296 @default.
- W4376274549 cites W2415111748 @default.
- W4376274549 cites W2556418652 @default.
- W4376274549 cites W2710609680 @default.
- W4376274549 cites W2801836732 @default.
- W4376274549 cites W2902107055 @default.
- W4376274549 cites W2963691557 @default.
- W4376274549 cites W2966255560 @default.
- W4376274549 cites W2978449012 @default.
- W4376274549 cites W2985426613 @default.
- W4376274549 cites W2989808303 @default.
- W4376274549 cites W2999053608 @default.
- W4376274549 cites W3023104774 @default.
- W4376274549 cites W3089171037 @default.
- W4376274549 cites W3095758112 @default.
- W4376274549 cites W3122735851 @default.
- W4376274549 cites W3164877959 @default.
- W4376274549 cites W3172812377 @default.
- W4376274549 cites W3174812422 @default.
- W4376274549 cites W3205043308 @default.
- W4376274549 cites W3207838049 @default.
- W4376274549 cites W4200390501 @default.
- W4376274549 cites W4280557982 @default.
- W4376274549 cites W4293246314 @default.
- W4376274549 doi "https://doi.org/10.1016/j.asoc.2023.110263" @default.
- W4376274549 hasPublicationYear "2023" @default.
- W4376274549 type Work @default.
- W4376274549 citedByCount "0" @default.
- W4376274549 crossrefType "journal-article" @default.
- W4376274549 hasAuthorship W4376274549A5056989509 @default.
- W4376274549 hasAuthorship W4376274549A5057446475 @default.
- W4376274549 hasAuthorship W4376274549A5070424516 @default.
- W4376274549 hasAuthorship W4376274549A5073634264 @default.
- W4376274549 hasConcept C106945098 @default.
- W4376274549 hasConcept C11413529 @default.
- W4376274549 hasConcept C119599485 @default.
- W4376274549 hasConcept C121332964 @default.
- W4376274549 hasConcept C127413603 @default.
- W4376274549 hasConcept C154945302 @default.
- W4376274549 hasConcept C157286648 @default.
- W4376274549 hasConcept C163258240 @default.
- W4376274549 hasConcept C165801399 @default.
- W4376274549 hasConcept C2775924081 @default.
- W4376274549 hasConcept C2776582896 @default.
- W4376274549 hasConcept C2777294910 @default.
- W4376274549 hasConcept C41008148 @default.
- W4376274549 hasConcept C47446073 @default.
- W4376274549 hasConcept C50644808 @default.
- W4376274549 hasConcept C555008776 @default.
- W4376274549 hasConcept C58166 @default.
- W4376274549 hasConcept C62520636 @default.
- W4376274549 hasConceptScore W4376274549C106945098 @default.
- W4376274549 hasConceptScore W4376274549C11413529 @default.
- W4376274549 hasConceptScore W4376274549C119599485 @default.
- W4376274549 hasConceptScore W4376274549C121332964 @default.
- W4376274549 hasConceptScore W4376274549C127413603 @default.
- W4376274549 hasConceptScore W4376274549C154945302 @default.
- W4376274549 hasConceptScore W4376274549C157286648 @default.
- W4376274549 hasConceptScore W4376274549C163258240 @default.
- W4376274549 hasConceptScore W4376274549C165801399 @default.
- W4376274549 hasConceptScore W4376274549C2775924081 @default.
- W4376274549 hasConceptScore W4376274549C2776582896 @default.
- W4376274549 hasConceptScore W4376274549C2777294910 @default.
- W4376274549 hasConceptScore W4376274549C41008148 @default.
- W4376274549 hasConceptScore W4376274549C47446073 @default.
- W4376274549 hasConceptScore W4376274549C50644808 @default.
- W4376274549 hasConceptScore W4376274549C555008776 @default.
- W4376274549 hasConceptScore W4376274549C58166 @default.
- W4376274549 hasConceptScore W4376274549C62520636 @default.
- W4376274549 hasLocation W43762745491 @default.
- W4376274549 hasOpenAccess W4376274549 @default.
- W4376274549 hasPrimaryLocation W43762745491 @default.
- W4376274549 hasRelatedWork W1511958511 @default.
- W4376274549 hasRelatedWork W2018334836 @default.
- W4376274549 hasRelatedWork W2118126947 @default.
- W4376274549 hasRelatedWork W2209729698 @default.