Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376274829> ?p ?o ?g. }
- W4376274829 endingPage "1720" @default.
- W4376274829 startingPage "1720" @default.
- W4376274829 abstract "Cervical squamous intraepithelial lesions (SILs) are precursor lesions of cervical cancer, and their accurate diagnosis enables patients to be treated before malignancy manifests. However, the identification of SILs is usually laborious and has low diagnostic consistency due to the high similarity of pathological SIL images. Although artificial intelligence (AI), especially deep learning algorithms, has drawn a lot of attention for its good performance in cervical cytology tasks, the use of AI for cervical histology is still in its early stages. The feature extraction, representation capabilities, and use of p16 immunohistochemistry (IHC) among existing models are inadequate. Therefore, in this study, we first designed a squamous epithelium segmentation algorithm and assigned the corresponding labels. Second, p16-positive area of IHC slides were extracted with Whole Image Net (WI-Net), followed by mapping the p16-positive area back to the H&E slides and generating a p16-positive mask for training. Finally, the p16-positive areas were inputted into Swin-B and ResNet-50 to classify the SILs. The dataset comprised 6171 patches from 111 patients; patches from 80% of the 90 patients were used for the training set. The accuracy of the Swin-B method for high-grade squamous intraepithelial lesion (HSIL) that we propose was 0.914 [0.889-0.928]. The ResNet-50 model for HSIL achieved an area under the receiver operating characteristic curve (AUC) of 0.935 [0.921-0.946] at the patch level, and the accuracy, sensitivity, and specificity were 0.845, 0.922, and 0.829, respectively. Therefore, our model can accurately identify HSIL, assisting the pathologist in solving actual diagnostic issues and even directing the follow-up treatment of patients." @default.
- W4376274829 created "2023-05-13" @default.
- W4376274829 creator A5014046253 @default.
- W4376274829 creator A5037656487 @default.
- W4376274829 creator A5038072419 @default.
- W4376274829 creator A5050953889 @default.
- W4376274829 creator A5062261683 @default.
- W4376274829 creator A5085246509 @default.
- W4376274829 creator A5087171794 @default.
- W4376274829 creator A5090394982 @default.
- W4376274829 date "2023-05-12" @default.
- W4376274829 modified "2023-10-14" @default.
- W4376274829 title "Deep Learning-Based Recognition of Cervical Squamous Interepithelial Lesions" @default.
- W4376274829 cites W2027123781 @default.
- W4376274829 cites W2071201298 @default.
- W4376274829 cites W2086202922 @default.
- W4376274829 cites W2097110160 @default.
- W4376274829 cites W2099954138 @default.
- W4376274829 cites W2114418380 @default.
- W4376274829 cites W2131180223 @default.
- W4376274829 cites W2131255017 @default.
- W4376274829 cites W2133287637 @default.
- W4376274829 cites W2144807742 @default.
- W4376274829 cites W2146432800 @default.
- W4376274829 cites W2160667523 @default.
- W4376274829 cites W2343051383 @default.
- W4376274829 cites W2395611524 @default.
- W4376274829 cites W2395982254 @default.
- W4376274829 cites W2444204715 @default.
- W4376274829 cites W2566450153 @default.
- W4376274829 cites W2884915496 @default.
- W4376274829 cites W2943370629 @default.
- W4376274829 cites W2948930564 @default.
- W4376274829 cites W2964004560 @default.
- W4376274829 cites W2967444033 @default.
- W4376274829 cites W2981365593 @default.
- W4376274829 cites W2995276890 @default.
- W4376274829 cites W3030172556 @default.
- W4376274829 cites W3049758536 @default.
- W4376274829 cites W3115656130 @default.
- W4376274829 cites W3119192920 @default.
- W4376274829 cites W3128646645 @default.
- W4376274829 cites W3138516171 @default.
- W4376274829 cites W4220679340 @default.
- W4376274829 cites W4281823289 @default.
- W4376274829 cites W4283591374 @default.
- W4376274829 cites W4289517127 @default.
- W4376274829 cites W4298003467 @default.
- W4376274829 cites W4307841244 @default.
- W4376274829 cites W4311649172 @default.
- W4376274829 cites W4315619246 @default.
- W4376274829 doi "https://doi.org/10.3390/diagnostics13101720" @default.
- W4376274829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37238206" @default.
- W4376274829 hasPublicationYear "2023" @default.
- W4376274829 type Work @default.
- W4376274829 citedByCount "0" @default.
- W4376274829 crossrefType "journal-article" @default.
- W4376274829 hasAuthorship W4376274829A5014046253 @default.
- W4376274829 hasAuthorship W4376274829A5037656487 @default.
- W4376274829 hasAuthorship W4376274829A5038072419 @default.
- W4376274829 hasAuthorship W4376274829A5050953889 @default.
- W4376274829 hasAuthorship W4376274829A5062261683 @default.
- W4376274829 hasAuthorship W4376274829A5085246509 @default.
- W4376274829 hasAuthorship W4376274829A5087171794 @default.
- W4376274829 hasAuthorship W4376274829A5090394982 @default.
- W4376274829 hasBestOaLocation W43762748291 @default.
- W4376274829 hasConcept C121608353 @default.
- W4376274829 hasConcept C126322002 @default.
- W4376274829 hasConcept C142724271 @default.
- W4376274829 hasConcept C154945302 @default.
- W4376274829 hasConcept C2775924586 @default.
- W4376274829 hasConcept C2777343196 @default.
- W4376274829 hasConcept C2778220009 @default.
- W4376274829 hasConcept C2779399171 @default.
- W4376274829 hasConcept C41008148 @default.
- W4376274829 hasConcept C71924100 @default.
- W4376274829 hasConcept C89600930 @default.
- W4376274829 hasConceptScore W4376274829C121608353 @default.
- W4376274829 hasConceptScore W4376274829C126322002 @default.
- W4376274829 hasConceptScore W4376274829C142724271 @default.
- W4376274829 hasConceptScore W4376274829C154945302 @default.
- W4376274829 hasConceptScore W4376274829C2775924586 @default.
- W4376274829 hasConceptScore W4376274829C2777343196 @default.
- W4376274829 hasConceptScore W4376274829C2778220009 @default.
- W4376274829 hasConceptScore W4376274829C2779399171 @default.
- W4376274829 hasConceptScore W4376274829C41008148 @default.
- W4376274829 hasConceptScore W4376274829C71924100 @default.
- W4376274829 hasConceptScore W4376274829C89600930 @default.
- W4376274829 hasIssue "10" @default.
- W4376274829 hasLocation W43762748291 @default.
- W4376274829 hasLocation W43762748292 @default.
- W4376274829 hasLocation W43762748293 @default.
- W4376274829 hasOpenAccess W4376274829 @default.
- W4376274829 hasPrimaryLocation W43762748291 @default.
- W4376274829 hasRelatedWork W1998885523 @default.
- W4376274829 hasRelatedWork W2005437358 @default.
- W4376274829 hasRelatedWork W2081064592 @default.
- W4376274829 hasRelatedWork W2146824523 @default.