Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376278573> ?p ?o ?g. }
- W4376278573 endingPage "2251" @default.
- W4376278573 startingPage "2251" @default.
- W4376278573 abstract "The mixture of experts (ME) model is effective for multimodal data in statistics and machine learning. To treat non-stationary probabilistic regression, the mixture of Gaussian processes (MGP) model has been proposed, but it may not perform well in some cases due to the limited ability of each Gaussian process (GP) expert. Although the mixture of Gaussian processes (MGP) and warped Gaussian process (WGP) models are dominant and effective for non-stationary probabilistic regression, they may not be able to handle general non-stationary probabilistic regression in practice. In this paper, we first propose the mixture of warped Gaussian processes (MWGP) model as well as its classification expectation–maximization (CEM) algorithm to address this problem. To overcome the local optimum of the CEM algorithm, we then propose the split and merge CEM (SMC EM) algorithm for MWGP. Experiments were done on synthetic and real-world datasets, which show that our proposed MWGP is more effective than the models used for comparison, and the SMCEM algorithm can solve the local optimum for MWGP." @default.
- W4376278573 created "2023-05-13" @default.
- W4376278573 creator A5000024949 @default.
- W4376278573 creator A5001836482 @default.
- W4376278573 creator A5014518994 @default.
- W4376278573 date "2023-05-11" @default.
- W4376278573 modified "2023-10-18" @default.
- W4376278573 title "An Improved Mixture Model of Gaussian Processes and Its Classification Expectation–Maximization Algorithm" @default.
- W4376278573 cites W2025653905 @default.
- W4376278573 cites W2028501442 @default.
- W4376278573 cites W2059279601 @default.
- W4376278573 cites W2068238590 @default.
- W4376278573 cites W2083076425 @default.
- W4376278573 cites W2087232378 @default.
- W4376278573 cites W2095414395 @default.
- W4376278573 cites W2096166399 @default.
- W4376278573 cites W2106961326 @default.
- W4376278573 cites W2108876167 @default.
- W4376278573 cites W2118292158 @default.
- W4376278573 cites W2126100478 @default.
- W4376278573 cites W2143266849 @default.
- W4376278573 cites W2151386286 @default.
- W4376278573 cites W2153635508 @default.
- W4376278573 cites W2160299137 @default.
- W4376278573 cites W2292090008 @default.
- W4376278573 cites W2295295550 @default.
- W4376278573 cites W2587752088 @default.
- W4376278573 cites W2603908693 @default.
- W4376278573 cites W2884599087 @default.
- W4376278573 cites W2901487119 @default.
- W4376278573 cites W2953822436 @default.
- W4376278573 cites W2989592091 @default.
- W4376278573 cites W3027169844 @default.
- W4376278573 cites W3035069654 @default.
- W4376278573 cites W3099646280 @default.
- W4376278573 cites W3099767913 @default.
- W4376278573 cites W3105051566 @default.
- W4376278573 cites W3159511832 @default.
- W4376278573 cites W4211049957 @default.
- W4376278573 cites W4213343198 @default.
- W4376278573 cites W4229332282 @default.
- W4376278573 cites W4280535137 @default.
- W4376278573 cites W4283582502 @default.
- W4376278573 cites W4292257365 @default.
- W4376278573 cites W4295532994 @default.
- W4376278573 cites W97653666 @default.
- W4376278573 doi "https://doi.org/10.3390/math11102251" @default.
- W4376278573 hasPublicationYear "2023" @default.
- W4376278573 type Work @default.
- W4376278573 citedByCount "0" @default.
- W4376278573 crossrefType "journal-article" @default.
- W4376278573 hasAuthorship W4376278573A5000024949 @default.
- W4376278573 hasAuthorship W4376278573A5001836482 @default.
- W4376278573 hasAuthorship W4376278573A5014518994 @default.
- W4376278573 hasBestOaLocation W43762785731 @default.
- W4376278573 hasConcept C105795698 @default.
- W4376278573 hasConcept C11413529 @default.
- W4376278573 hasConcept C114289077 @default.
- W4376278573 hasConcept C119857082 @default.
- W4376278573 hasConcept C121332964 @default.
- W4376278573 hasConcept C126255220 @default.
- W4376278573 hasConcept C153180895 @default.
- W4376278573 hasConcept C154945302 @default.
- W4376278573 hasConcept C163716315 @default.
- W4376278573 hasConcept C182081679 @default.
- W4376278573 hasConcept C197129107 @default.
- W4376278573 hasConcept C23123220 @default.
- W4376278573 hasConcept C2776330181 @default.
- W4376278573 hasConcept C33923547 @default.
- W4376278573 hasConcept C41008148 @default.
- W4376278573 hasConcept C49781872 @default.
- W4376278573 hasConcept C49937458 @default.
- W4376278573 hasConcept C61224824 @default.
- W4376278573 hasConcept C61326573 @default.
- W4376278573 hasConcept C62520636 @default.
- W4376278573 hasConcept C81692654 @default.
- W4376278573 hasConceptScore W4376278573C105795698 @default.
- W4376278573 hasConceptScore W4376278573C11413529 @default.
- W4376278573 hasConceptScore W4376278573C114289077 @default.
- W4376278573 hasConceptScore W4376278573C119857082 @default.
- W4376278573 hasConceptScore W4376278573C121332964 @default.
- W4376278573 hasConceptScore W4376278573C126255220 @default.
- W4376278573 hasConceptScore W4376278573C153180895 @default.
- W4376278573 hasConceptScore W4376278573C154945302 @default.
- W4376278573 hasConceptScore W4376278573C163716315 @default.
- W4376278573 hasConceptScore W4376278573C182081679 @default.
- W4376278573 hasConceptScore W4376278573C197129107 @default.
- W4376278573 hasConceptScore W4376278573C23123220 @default.
- W4376278573 hasConceptScore W4376278573C2776330181 @default.
- W4376278573 hasConceptScore W4376278573C33923547 @default.
- W4376278573 hasConceptScore W4376278573C41008148 @default.
- W4376278573 hasConceptScore W4376278573C49781872 @default.
- W4376278573 hasConceptScore W4376278573C49937458 @default.
- W4376278573 hasConceptScore W4376278573C61224824 @default.
- W4376278573 hasConceptScore W4376278573C61326573 @default.
- W4376278573 hasConceptScore W4376278573C62520636 @default.
- W4376278573 hasConceptScore W4376278573C81692654 @default.
- W4376278573 hasFunder F4320321001 @default.