Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376278575> ?p ?o ?g. }
- W4376278575 endingPage "2254" @default.
- W4376278575 startingPage "2254" @default.
- W4376278575 abstract "It is necessary to explore more accurate estimates of the infinity norm of the inverse of a matrix in both theoretical analysis and practical applications. This paper focuses on obtaining a tighter upper bound on the infinite norm of the inverse of Dashnic–Zusmanovich-type (DZT) matrices. The realization of this goal benefits from constructing the scaling matrix of DZT matrices and the diagonal dominant degrees of Schur complements of DZT matrices. The effectiveness and superiority of the obtained bounds are demonstrated through several numerical examples involving random variables. Moreover, a lower bound for the smallest singular value is given by using the proposed bound." @default.
- W4376278575 created "2023-05-13" @default.
- W4376278575 creator A5022487873 @default.
- W4376278575 creator A5062304188 @default.
- W4376278575 creator A5079591368 @default.
- W4376278575 date "2023-05-11" @default.
- W4376278575 modified "2023-10-18" @default.
- W4376278575 title "Schur Complement-Based Infinity Norm Bound for the Inverse of Dashnic-Zusmanovich Type Matrices" @default.
- W4376278575 cites W1494229254 @default.
- W4376278575 cites W170003236 @default.
- W4376278575 cites W1969652689 @default.
- W4376278575 cites W1981072042 @default.
- W4376278575 cites W1997340078 @default.
- W4376278575 cites W2013279141 @default.
- W4376278575 cites W2019149899 @default.
- W4376278575 cites W2039562885 @default.
- W4376278575 cites W2042782097 @default.
- W4376278575 cites W2054557638 @default.
- W4376278575 cites W2079358656 @default.
- W4376278575 cites W2079854271 @default.
- W4376278575 cites W2106537516 @default.
- W4376278575 cites W2260280945 @default.
- W4376278575 cites W2281964624 @default.
- W4376278575 cites W2512138232 @default.
- W4376278575 cites W2802209923 @default.
- W4376278575 cites W2904560914 @default.
- W4376278575 cites W2988709789 @default.
- W4376278575 cites W3002874117 @default.
- W4376278575 cites W3035235874 @default.
- W4376278575 cites W3115487577 @default.
- W4376278575 cites W4205756915 @default.
- W4376278575 cites W4295016751 @default.
- W4376278575 doi "https://doi.org/10.3390/math11102254" @default.
- W4376278575 hasPublicationYear "2023" @default.
- W4376278575 type Work @default.
- W4376278575 citedByCount "0" @default.
- W4376278575 crossrefType "journal-article" @default.
- W4376278575 hasAuthorship W4376278575A5022487873 @default.
- W4376278575 hasAuthorship W4376278575A5062304188 @default.
- W4376278575 hasAuthorship W4376278575A5079591368 @default.
- W4376278575 hasBestOaLocation W43762785751 @default.
- W4376278575 hasConcept C102591085 @default.
- W4376278575 hasConcept C104317684 @default.
- W4376278575 hasConcept C10628310 @default.
- W4376278575 hasConcept C106487976 @default.
- W4376278575 hasConcept C109282560 @default.
- W4376278575 hasConcept C112313634 @default.
- W4376278575 hasConcept C114614502 @default.
- W4376278575 hasConcept C121332964 @default.
- W4376278575 hasConcept C127716648 @default.
- W4376278575 hasConcept C130367717 @default.
- W4376278575 hasConcept C134306372 @default.
- W4376278575 hasConcept C146324458 @default.
- W4376278575 hasConcept C158693339 @default.
- W4376278575 hasConcept C159985019 @default.
- W4376278575 hasConcept C17744445 @default.
- W4376278575 hasConcept C185592680 @default.
- W4376278575 hasConcept C188082640 @default.
- W4376278575 hasConcept C191795146 @default.
- W4376278575 hasConcept C192562407 @default.
- W4376278575 hasConcept C199539241 @default.
- W4376278575 hasConcept C202444582 @default.
- W4376278575 hasConcept C207467116 @default.
- W4376278575 hasConcept C21736991 @default.
- W4376278575 hasConcept C2524010 @default.
- W4376278575 hasConcept C2731191 @default.
- W4376278575 hasConcept C29701004 @default.
- W4376278575 hasConcept C33923547 @default.
- W4376278575 hasConcept C55493867 @default.
- W4376278575 hasConcept C62520636 @default.
- W4376278575 hasConcept C77553402 @default.
- W4376278575 hasConcept C78540521 @default.
- W4376278575 hasConcept C84507854 @default.
- W4376278575 hasConcept C92207270 @default.
- W4376278575 hasConcept C96442724 @default.
- W4376278575 hasConcept C99383703 @default.
- W4376278575 hasConceptScore W4376278575C102591085 @default.
- W4376278575 hasConceptScore W4376278575C104317684 @default.
- W4376278575 hasConceptScore W4376278575C10628310 @default.
- W4376278575 hasConceptScore W4376278575C106487976 @default.
- W4376278575 hasConceptScore W4376278575C109282560 @default.
- W4376278575 hasConceptScore W4376278575C112313634 @default.
- W4376278575 hasConceptScore W4376278575C114614502 @default.
- W4376278575 hasConceptScore W4376278575C121332964 @default.
- W4376278575 hasConceptScore W4376278575C127716648 @default.
- W4376278575 hasConceptScore W4376278575C130367717 @default.
- W4376278575 hasConceptScore W4376278575C134306372 @default.
- W4376278575 hasConceptScore W4376278575C146324458 @default.
- W4376278575 hasConceptScore W4376278575C158693339 @default.
- W4376278575 hasConceptScore W4376278575C159985019 @default.
- W4376278575 hasConceptScore W4376278575C17744445 @default.
- W4376278575 hasConceptScore W4376278575C185592680 @default.
- W4376278575 hasConceptScore W4376278575C188082640 @default.
- W4376278575 hasConceptScore W4376278575C191795146 @default.
- W4376278575 hasConceptScore W4376278575C192562407 @default.
- W4376278575 hasConceptScore W4376278575C199539241 @default.
- W4376278575 hasConceptScore W4376278575C202444582 @default.
- W4376278575 hasConceptScore W4376278575C207467116 @default.