Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376280023> ?p ?o ?g. }
- W4376280023 abstract "To develop and validate deep learning-based automatic brain segmentation for East Asians with comparison to data for healthy controls from Freesurfer based on a ground truth.A total of 30 healthy participants were enrolled and underwent T1-weighted magnetic resonance imaging (MRI) using a 3-tesla MRI system. Our Neuro I software was developed based on a three-dimensional convolutional neural networks (CNNs)-based, deep-learning algorithm, which was trained using data for 776 healthy Koreans with normal cognition. Dice coefficient (D) was calculated for each brain segment and compared with control data by paired t-test. The inter-method reliability was assessed by intraclass correlation coefficient (ICC) and effect size. Pearson correlation analysis was applied to assess the relationship between D values for each method and participant ages.The D values obtained from Freesurfer (ver6.0) were significantly lower than those from Neuro I. The histogram of the Freesurfer results showed remarkable differences in the distribution of D values from Neuro I. Overall, D values obtained by Freesurfer and Neuro I showed positive correlations, but the slopes and intercepts were significantly different. It was showed the largest effect sizes ranged 1.07-3.22, and ICC also showed significantly poor to moderate correlations between the two methods (0.498 ≤ ICC ≤ 0.688). For Neuro I, D values resulted in reduced residuals when fitting data to a line of best fit, and indicated consistent values corresponding to each age, even in young and older adults.Freesurfer and Neuro I were not equivalent when compared to a ground truth, where Neuro I exhibited higher performance. We suggest that Neuro I is a useful alternative for the assessment of the brain volume." @default.
- W4376280023 created "2023-05-13" @default.
- W4376280023 creator A5018118393 @default.
- W4376280023 creator A5021080322 @default.
- W4376280023 creator A5030217426 @default.
- W4376280023 creator A5046391746 @default.
- W4376280023 creator A5050857090 @default.
- W4376280023 creator A5078011656 @default.
- W4376280023 creator A5091931345 @default.
- W4376280023 creator A5078093404 @default.
- W4376280023 date "2023-05-12" @default.
- W4376280023 modified "2023-10-18" @default.
- W4376280023 title "Development and validation of deep learning-based automatic brain segmentation for East Asians: A comparison with Freesurfer" @default.
- W4376280023 cites W1033578154 @default.
- W4376280023 cites W1749244360 @default.
- W4376280023 cites W1902139676 @default.
- W4376280023 cites W2019587683 @default.
- W4376280023 cites W2027771129 @default.
- W4376280023 cites W2033802739 @default.
- W4376280023 cites W2061639197 @default.
- W4376280023 cites W2066470779 @default.
- W4376280023 cites W2074980270 @default.
- W4376280023 cites W2120866479 @default.
- W4376280023 cites W2129574992 @default.
- W4376280023 cites W2151721316 @default.
- W4376280023 cites W2292780717 @default.
- W4376280023 cites W2414152383 @default.
- W4376280023 cites W2589923316 @default.
- W4376280023 cites W2614397383 @default.
- W4376280023 cites W2769312588 @default.
- W4376280023 cites W2903973256 @default.
- W4376280023 cites W2911135784 @default.
- W4376280023 cites W2984666090 @default.
- W4376280023 cites W3000367131 @default.
- W4376280023 cites W3080866302 @default.
- W4376280023 cites W3096163405 @default.
- W4376280023 cites W3098513229 @default.
- W4376280023 cites W3110796009 @default.
- W4376280023 cites W3112701542 @default.
- W4376280023 cites W3114761869 @default.
- W4376280023 cites W3198344345 @default.
- W4376280023 cites W4226132919 @default.
- W4376280023 cites W4241074797 @default.
- W4376280023 doi "https://doi.org/10.3389/fnins.2023.1157738" @default.
- W4376280023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37250408" @default.
- W4376280023 hasPublicationYear "2023" @default.
- W4376280023 type Work @default.
- W4376280023 citedByCount "1" @default.
- W4376280023 countsByYear W43762800232023 @default.
- W4376280023 crossrefType "journal-article" @default.
- W4376280023 hasAuthorship W4376280023A5018118393 @default.
- W4376280023 hasAuthorship W4376280023A5021080322 @default.
- W4376280023 hasAuthorship W4376280023A5030217426 @default.
- W4376280023 hasAuthorship W4376280023A5046391746 @default.
- W4376280023 hasAuthorship W4376280023A5050857090 @default.
- W4376280023 hasAuthorship W4376280023A5078011656 @default.
- W4376280023 hasAuthorship W4376280023A5078093404 @default.
- W4376280023 hasAuthorship W4376280023A5091931345 @default.
- W4376280023 hasBestOaLocation W43762800231 @default.
- W4376280023 hasConcept C104709138 @default.
- W4376280023 hasConcept C105795698 @default.
- W4376280023 hasConcept C108583219 @default.
- W4376280023 hasConcept C117220453 @default.
- W4376280023 hasConcept C124504099 @default.
- W4376280023 hasConcept C126838900 @default.
- W4376280023 hasConcept C143409427 @default.
- W4376280023 hasConcept C153180895 @default.
- W4376280023 hasConcept C154945302 @default.
- W4376280023 hasConcept C15744967 @default.
- W4376280023 hasConcept C163892561 @default.
- W4376280023 hasConcept C2524010 @default.
- W4376280023 hasConcept C2780092901 @default.
- W4376280023 hasConcept C33923547 @default.
- W4376280023 hasConcept C41008148 @default.
- W4376280023 hasConcept C50644808 @default.
- W4376280023 hasConcept C55078378 @default.
- W4376280023 hasConcept C71924100 @default.
- W4376280023 hasConcept C81363708 @default.
- W4376280023 hasConcept C89600930 @default.
- W4376280023 hasConcept C9893847 @default.
- W4376280023 hasConceptScore W4376280023C104709138 @default.
- W4376280023 hasConceptScore W4376280023C105795698 @default.
- W4376280023 hasConceptScore W4376280023C108583219 @default.
- W4376280023 hasConceptScore W4376280023C117220453 @default.
- W4376280023 hasConceptScore W4376280023C124504099 @default.
- W4376280023 hasConceptScore W4376280023C126838900 @default.
- W4376280023 hasConceptScore W4376280023C143409427 @default.
- W4376280023 hasConceptScore W4376280023C153180895 @default.
- W4376280023 hasConceptScore W4376280023C154945302 @default.
- W4376280023 hasConceptScore W4376280023C15744967 @default.
- W4376280023 hasConceptScore W4376280023C163892561 @default.
- W4376280023 hasConceptScore W4376280023C2524010 @default.
- W4376280023 hasConceptScore W4376280023C2780092901 @default.
- W4376280023 hasConceptScore W4376280023C33923547 @default.
- W4376280023 hasConceptScore W4376280023C41008148 @default.
- W4376280023 hasConceptScore W4376280023C50644808 @default.
- W4376280023 hasConceptScore W4376280023C55078378 @default.
- W4376280023 hasConceptScore W4376280023C71924100 @default.
- W4376280023 hasConceptScore W4376280023C81363708 @default.
- W4376280023 hasConceptScore W4376280023C89600930 @default.