Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376286680> ?p ?o ?g. }
- W4376286680 endingPage "9583" @default.
- W4376286680 startingPage "9573" @default.
- W4376286680 abstract "Layered alloys are widely studied as designable catalysts. As a surface probe molecule, CO adsorption energy is not only employed to characterize surface properties but also used as the catalytic activity descriptor in various reactions. With the aid of high-throughput computing technology, we calculated CO adsorption energies on 3729layered alloy surfaces. To obtain CO adsorption energies, the d-band center and d-band skewness, and the stability of all the remaining layered alloys (8415) of 23 transition metals, we collected 91 features that do not require time-consuming quantum chemistry calculations (non-QC features) and 40 features from quantum chemistry calculations (QC features). To reduce the feature dimension and overcome overfitting problems, we proposed a modified sequential feature selection (SFS) wrapper method to identify (sub)optimal subsets. Two supervised light gradient boosting machine regression (LGBMR) machine learning (ML) regression models were established using the identified subsets. It is demonstrated that the size of the feature subset converges rapidly, and the performance of the model with size nine is already quite satisfactory. The ML model of the non-QC features outperforms that of QC features. Using the ML models established with non-QC features, we predicted the CO adsorption energies and the electronic structure–properties (d-band center, d-band skewness) and stability of 8415 layered alloys. Based on the four conditions (CO adsorption energy, stability, price, and surface segregation), potential alloy catalysts for CO2 to methanol were screened out of 12144 layered alloys." @default.
- W4376286680 created "2023-05-13" @default.
- W4376286680 creator A5010412191 @default.
- W4376286680 creator A5011793802 @default.
- W4376286680 creator A5080845219 @default.
- W4376286680 date "2023-05-12" @default.
- W4376286680 modified "2023-10-15" @default.
- W4376286680 title "Machine Learning Prediction of CO Adsorption Energies and Properties of Layered Alloys Using an Improved Feature Selection Algorithm" @default.
- W4376286680 cites W1517118877 @default.
- W4376286680 cites W1523989055 @default.
- W4376286680 cites W1528588768 @default.
- W4376286680 cites W1636573050 @default.
- W4376286680 cites W1812261457 @default.
- W4376286680 cites W1965756506 @default.
- W4376286680 cites W1968426044 @default.
- W4376286680 cites W1969097601 @default.
- W4376286680 cites W1970127494 @default.
- W4376286680 cites W1972725254 @default.
- W4376286680 cites W1979544533 @default.
- W4376286680 cites W1980317218 @default.
- W4376286680 cites W1981368803 @default.
- W4376286680 cites W1984500458 @default.
- W4376286680 cites W1987329715 @default.
- W4376286680 cites W2003700960 @default.
- W4376286680 cites W2004546166 @default.
- W4376286680 cites W2007395042 @default.
- W4376286680 cites W2016632908 @default.
- W4376286680 cites W2017337590 @default.
- W4376286680 cites W2017833988 @default.
- W4376286680 cites W2023390323 @default.
- W4376286680 cites W2023763207 @default.
- W4376286680 cites W2036281038 @default.
- W4376286680 cites W2040837725 @default.
- W4376286680 cites W2045164453 @default.
- W4376286680 cites W2047708749 @default.
- W4376286680 cites W2048807806 @default.
- W4376286680 cites W2054013992 @default.
- W4376286680 cites W2060023027 @default.
- W4376286680 cites W2060745946 @default.
- W4376286680 cites W2067746562 @default.
- W4376286680 cites W2071514571 @default.
- W4376286680 cites W2072026441 @default.
- W4376286680 cites W2076334536 @default.
- W4376286680 cites W2079105963 @default.
- W4376286680 cites W2083222334 @default.
- W4376286680 cites W2087698390 @default.
- W4376286680 cites W2088616505 @default.
- W4376286680 cites W2091775405 @default.
- W4376286680 cites W2115729799 @default.
- W4376286680 cites W2126954122 @default.
- W4376286680 cites W2148633389 @default.
- W4376286680 cites W2169904128 @default.
- W4376286680 cites W2262215104 @default.
- W4376286680 cites W2314642759 @default.
- W4376286680 cites W2318989366 @default.
- W4376286680 cites W2319195884 @default.
- W4376286680 cites W2331666382 @default.
- W4376286680 cites W2335649524 @default.
- W4376286680 cites W2346591116 @default.
- W4376286680 cites W2352719088 @default.
- W4376286680 cites W2462003543 @default.
- W4376286680 cites W2515196917 @default.
- W4376286680 cites W2519932146 @default.
- W4376286680 cites W2611869399 @default.
- W4376286680 cites W2760744264 @default.
- W4376286680 cites W2767656603 @default.
- W4376286680 cites W2802178028 @default.
- W4376286680 cites W2802420383 @default.
- W4376286680 cites W2884430236 @default.
- W4376286680 cites W2884795272 @default.
- W4376286680 cites W2909813074 @default.
- W4376286680 cites W2910222073 @default.
- W4376286680 cites W2924309533 @default.
- W4376286680 cites W2944269070 @default.
- W4376286680 cites W2995455660 @default.
- W4376286680 cites W3041310603 @default.
- W4376286680 cites W3045016385 @default.
- W4376286680 cites W3047122860 @default.
- W4376286680 cites W3088988053 @default.
- W4376286680 cites W3114661508 @default.
- W4376286680 cites W3178976059 @default.
- W4376286680 cites W3206606417 @default.
- W4376286680 cites W3215680538 @default.
- W4376286680 cites W4226133037 @default.
- W4376286680 cites W4242151262 @default.
- W4376286680 cites W4281749556 @default.
- W4376286680 cites W7299809 @default.
- W4376286680 doi "https://doi.org/10.1021/acs.jpcc.2c09020" @default.
- W4376286680 hasPublicationYear "2023" @default.
- W4376286680 type Work @default.
- W4376286680 citedByCount "0" @default.
- W4376286680 crossrefType "journal-article" @default.
- W4376286680 hasAuthorship W4376286680A5010412191 @default.
- W4376286680 hasAuthorship W4376286680A5011793802 @default.
- W4376286680 hasAuthorship W4376286680A5080845219 @default.
- W4376286680 hasConcept C112972136 @default.
- W4376286680 hasConcept C11413529 @default.
- W4376286680 hasConcept C119857082 @default.